
Taming the Linux Memory Allocator for Rapid
Prototyping

Ruiyi Zhang, Tristan Hornetz, Lukas Gerlach, and Michael Schwarz

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. Microarchitectural attacks pose an increasing threat to sys-
tem security. They enable attackers to extract sensitive information such
as cryptographic keys, website usage patterns, or keystrokes. Software-
level defenses, such as constant-time implementations, mitigate some at-
tack vectors but impose significant challenges on developers. Operating-
system-level mitigations, such as page coloring and memory isolation,
address these threats but require intricate kernel modifications and time-
consuming workflows, making prototyping new defenses complex.
In this paper, we present MAPAlloc (Microarchitectural Prototyping Al-
locator), a flexible, cross-architecture framework for rapidly prototyping
memory allocation-based defenses and attacks on Linux systems. Using
a simple domain-specific language, MAPAlloc allows for precise control
over physical memory allocation on x86, ARMv8, and RISC-V. MAPAl-
loc enables quick implementation and evaluation of mitigations such as
page coloring and novel techniques like layered page coloring, increasing
the number of cache colors from 32 to 256 on modern CPUs. We demon-
strate MAPAlloc’s versatility through case studies that prevent Prime+
Probe and DRAMA attacks and reverse-engineer the AMD Zen 4 com-
plex cache-indexing function for use in layered page coloring. Addition-
ally, we prototype a Prime+Probe attack with an incomplete non-linear
slice function from previous work by limiting the physical memory using
MAPAlloc. Without MAPAlloc, such defense and attack prototypes re-
quire complicated modifications of the Linux kernel, making them hard
to develop and test. Thus, MAPAlloc is an essential framework for sim-
plifying research in microarchitectural security.

1 Introduction

Microarchitectural attacks are increasingly becoming a significant and practi-
cal threat. These attacks not only threaten security by inferring cryptographic
keys [6, 31] but also threaten privacy, such as in website fingerprinting [55, 68],
keystroke logging [52, 62], and compromising the privacy guarantees of differ-
ential privacy algorithms [25]. Academia and industry have dedicated substan-
tial effort to addressing this issue, targeting both hardware and software lev-
els. While hardware mitigations look promising, retrofitting them to existing
hardware CPUs is often not possible [49, 63, 51]. Moreover, it typically takes
years until mitigations appear in hardware, if they appear at all [56, 12]. A more

2 Zhang et al.

flexible approach involves software-level defenses against microarchitectural at-
tacks. Constant-time implementation [23], commonly found in cryptographic
libraries [41, 64, 46, 59], can avoid a broad class of microarchitectural attacks,
including ones that are based on timing or memory access patterns. However,
constant-time code is challenging to implement, making it impractical for all
but the most high-risk targets. Moreover, it shifts the burden to the developer
instead of fixing it at a more central point, such as the operating system.

Consequently, previous works proposed multiple mitigations on the operating-
system level [54, 29, 4, 32]. These mitigations influence memory allocation to
better isolate attacker and victim applications. Page coloring [5] assigns non-
overlapping cache sets to mutually untrusted applications, preventing eviction-
based cache attacks such as Prime+Probe and Evict+Reload. CATT [4] mit-
igates the effect of Rowhammer on the kernel by separating kernel and user-
space memory such that these memory regions never end up in adjacent DRAM
rows. Similarly, ZebRAM [32] modifies the allocator to have guard rows in
DRAM, making Rowhammer flips ineffective. Such mitigations all require com-
plex changes to the kernel, requiring considerable expertise in kernel data struc-
tures and functionality. Additionally, as microarchitectural attacks typically re-
quire native code execution, the workflow of compiling and rebooting into a new
kernel for tests is time-consuming and tedious.

In this paper, we present MAPAlloc (Microarchitectural Prototyping Al-
locator), a rapid-prototyping framework that provides extensive control over
the physical memory allocation of the Linux kernel. MAPAlloc supports an ex-
pressive Domain-Specific Language (DSL) for memory constraints to enable pre-
cise per-process control over the physical pages a process can access. MAPAl-
loc can easily provide proof-of-concept implementations for mitigations such as
page coloring by simply specifying the cache-set function using the DSL and the
process to which the restriction should be applied. Moreover, MAPAlloc is im-
plemented as a cross-architecture kernel module, supporting x86, ARMv8, and
RISC-V CPUs. Thus, MAPAlloc can be loaded at runtime on a wide range of
systems. MAPAlloc is designed for rapid prototyping, allowing the evaluation
of defense strategies such as emulating hardware coloring effects. However, it is
not a production-ready mitigation. Any real defense could similarly bypass or
modify the memory allocator, just as MAPAlloc does. Therefore all mitigations
prototyped using MAPAlloc will work in real systems.

To demonstrate the flexibility of MAPAlloc, we demonstrate how it can use
DRAM addressing functions [45] to separate DRAM rows and cache-set func-
tions to isolate cache sets [54], quickly reproducing known mitigations. In case
studies, we show that our prototyped mitigation using MAPAlloc effectively
prevents Prime+Probe and DRAMA attacks. Additionally, we introduce layered
page coloring, an improved variant of page coloring that combines cache sets
with cache slices to provide more flexibility in assigning non-overlapping cache
sets. We introduce a graph-based algorithm to calculate the number of available
colors when combining arbitrary linear and non-linear microarchitectural hash
functions. We show that on modern CPUs, layered page coloring can increase

Taming the Linux Memory Allocator for Rapid Prototyping 3

the number of colors from 32 to 256. Further, we reverse-engineer the cache
set-indexing function on AMD Zen 4 CPUs, showing that this complex function
can also be used for layered page coloring on the L2 and L3 caches. Thus, layer
page coloring is a viable defense on modern CPUs that could realistically be
implemented in the Linux kernel.

As a side effect, MAPAlloc can also simplify microarchitectural attack proto-
typing. For example, existing non-linear cache-slice functions for modern CPUs
have only been reverse-engineered for systems with at most 4GB of DRAM [15].
However, by limiting memory allocations to the first 4GB of physical mem-
ory using MAPAlloc, attacks can still be tested on systems with more memory.
Similarly, MAPAlloc can reduce the time it takes Rowhammer attacks to find
exploitable rows by limiting rows to a specific DIMM or even bank. Such artifi-
cial constraints on the system can ease attack prototyping, as shown in previous
work [11]. Note that MAPAlloc does not enhance real attacks, as it operates
as a privileged Linux kernel module. It only assists in prototyping by applying
controlled memory constraints.

Contributions. The main contributions of this work are:
1. We present MAPAlloc, a generic framework that allows for customizable re-

finement of physical page allocations across different architectures, enabling
researchers to quickly prototype mitigations (such as page coloring) and at-
tacks.

2. We introduce layered page coloring with linear and non-linear microarchi-
tectural hash functions, showing that such a combination can increase the
number of security domains for page coloring.

3. We reverse-engineer the complex set addressing and cache-slice functions on
AMD Zen 4 and demonstrate their use in page coloring.

4. In three case studies, we demonstrate the use cases of MAPAlloc by building
page coloring for the last-level cache and the DRAM and artificially limiting
the physical memory to prototype Prime+Probe with an incomplete non-
linear cache-slice function.

Structure. The paper is organized as follows. Section 2 provides relevant back-
ground. Section 3 presents the design and implementation of our frameworks.
In Section 4, we evaluate MAPAlloc by building prototypes for (layered) page
coloring against eviction-based attacks and DRAMA attacks, and we prototype
a Prime+Probe attack with an incomplete non-linear cache-slice function. Sec-
tion 5 evaluates the functionality and performance of MAPAlloc. We discuss
related works and limitations in Section 6. Section 7 concludes.

Availability. Our framework is available at https://github.com/cispa/MAPAlloc.

4 Zhang et al.

2 Background

2.1 Memory Allocators

Memory allocators are critical components of modern operating systems, respon-
sible for managing the allocation and deallocation of memory in units called
pages, each typically 4 kB in size. The main allocator in Linux, known as the
buddy allocator [8], groups free memory pages into buddies of various sizes,
which are powers of two. For example, an order-0 buddy is one 4 kB page, while
an order-3 buddy is 8 contiguous 4 kB pages (32 kB). The allocator uses free lists
to keep track of available memory blocks for each size. When a process requests
memory, the allocator can split larger blocks into smaller ones or merge adjacent
blocks to form larger ones, reducing fragmentation. Memory allocation requests
include flags, known as Get Free Pages (GFP) flags [8], which specify additional
information like whether the memory is for user or kernel space. These flags help
the allocator decide how to fulfill the request efficiently. Additionally, the per-
CPU page (PCP) allocator [9] manages free pages for each CPU, speeding up
memory allocation by reducing contention. Together, these mechanisms ensure
efficient memory management in the Linux kernel.

2.2 Cache Eviction and Attacks

Modern processors use cache memory to store frequently accessed data and in-
structions, significantly improving performance by reducing the time needed to
access data from the main memory. Unlike the larger 4 kB pages in main mem-
ory, the cache is organized into cache sets, each containing multiple 64-byte
chunks, known as cache lines. Despite their speed, caches have limited size, mak-
ing cache eviction necessary to create space for new entries when the cache is full.
Well-known cache side-channel attacks, such as Prime+Probe [44] and Evict+
Reload [18], exploit the cache eviction process to infer sensitive information. In
Prime+Probe, the attacker fills cache sets with their own data and later measures
access times to determine which cache lines were evicted by the victim’s memory
accesses, revealing the victim’s access patterns. Conversely, Evict+Reload relies
on shared memory. The attacker evicts a specific cache line by filling the cache
set, waits for the victim to access it, and then measures the reload time to infer
whether the victim accessed the memory.

2.3 DRAMA and Rowhammer

Unlike side channel attacks that target CPU caches, DRAMA attacks [45] tar-
get internal caching structures of DRAM modules called row buffers. DRAM
is structured into multiple components, including channels, DIMMs, ranks, and
banks, with the row being the smallest independently accessed unit. Each bank
consists of numerous rows, with a corresponding row buffer for read and write
operations. When data is accessed, the corresponding row is loaded into the row
buffer, which can then be read. Loads into the row buffer have variable latency

Taming the Linux Memory Allocator for Rapid Prototyping 5

depending on the row buffer state. If the row currently loaded is already cached
in the row buffer, access times are typically 50-70 cycles faster. By measuring
these access times, an attacker can monitor the state of the row buffer and im-
plicitly the victim’s memory access patterns. Similar to cache sets, a row can
contain memory from different applications.

While DRAMA attacks can leak victim memory access patterns, Rowhammer
attacks [30, 50, 48] can corrupt data. Similar to DRAMA attacks, Rowhammer
operates on the DRAM. However, in contrast to DRAMA, Rowhammer exploits
the physical properties of the DRAM cells. As DRAM cells are dynamic memory,
they leak charge over time and must be refreshed regularly to prevent memory
corruption. By repeatedly accessing (hammering) a row of memory, the power
leakage of DRAM cells is accelerated, and bit flips, typically in the adjacent
rows, are induced. These bit flips can corrupt data, allowing attackers to ma-
nipulate the memory content of other processes. While multiple mitigations on
hardware [12, 38, 3], software [4, 2] and combined [27] levels have been proposed,
Rowhammer remains challenging to mitigate. This is due to the closed nature
of DRAM modules and memory controllers and the fact that Rowhammer is
a physical phenomenon that even differs between identical setups [16]. Multi-
ple previous mitigation techniques, such as increasing refresh rates and ECC
DRAM, have been shown to be only partially effective [12].

2.4 Page Coloring

Page coloring is a memory allocation technique employed for performance [67] or
security [54] purposes. It allows for assigning “colors”, which are labels, to mem-
ory pages. The color of a page can be determined by arbitrary attributes, such
as physical address or allocating process. These colors can then serve as an addi-
tional attribute during allocation to distribute memory pages more precisely. For
example, page coloring can help to optimize cache utilization by considering the
cache sets as colors. Thus, pages with different colors can be used for frequently
accessed memory, as the non-overlapping cache sets prevent mutual eviction.
This increases the cache hit rate and, thus, an application’s performance. In the
context of security, page coloring can be used to prevent side-channel attacks by
isolating microarchitectural elements between processes. For example, if pages
from processes in different security domains are mapped to disjoint cache sets,
this prevents eviction-based cache side channels between the processes.

3 Framework

In this section, we present a high-level overview of MAPAlloc and its practi-
cal implementation for memory allocation manipulation. MAPAlloc allows re-
searchers to influence the physical memory allocation for a specific application
using a simple DSL. Once configured, MAPAlloc allocates pages only with the
physical addresses that fulfill the constraints given by the DSL. We evaluate the
proof-of-concept program on x86, ARMv8, and RISC-V CPUs.

6 Zhang et al.

Userspace Kernelspace

Kernel Driver

2 Preallocate

4 Serve pages

1 Submit expression

(x >> 12) ∧ 31 ̸= 4

3 Request memory

malloc(memsize)

Fig. 1: The design of MAPAlloc. A client requests a memory policy, which the
kernel driver preallocates. Afterward, the client can request memory allocations
from this pool.

3.1 Design

MAPAlloc consists of two core components: a DSL specifying constraints on
physical addresses and a custom allocator that allocates pages that fulfill these
constraints. While MAPAlloc has to run in the kernel, it exposes a user-space
interface for providing the DSL-defined constraints. Constraints are on a per-
process basis, specified via the process ID.

Figure 1 shows the overview of MAPAlloc. After providing DSL-defined con-
straints to MAPAlloc, MAPAlloc preallocates physical pages fulfilling the con-
straints in kernel mode. These preallocated pages are kept in a pool to quickly
provide them to the application if needed. Hence, allocating pages with MAPAl-
loc does not require costly searches for fitting pages, as the pool decouples this
search from the allocation. As a result, allocations are always fast, independent
of the constraint’s complexity. We allow for the configuration of this pool size to
ensure an ideal tradeoff between memory overhead and allocation speed.

To ensure that all memory allocations are served via MAPAlloc and its pool,
MAPAlloc hooks the Linux kernel’s memory allocation functions. This captures
all memory allocations, including explicit allocations via mmap and brk/sbrk
and implicit allocations triggered by page faults. Constraints can also apply to
already allocated pages. For example, since user-space applications never directly
interact with physical pages, the operating system (or, in this case, MAPAlloc)
can transparently migrate existing pages to ones that meet specific constraints.
MAPAlloc provide APIs to enforce migration by iterating through the relevant
pages, updating the respective page-table entries, and flushing the TLB to ensure
coherence.

3.2 DSL

We provide a lightweight DSL for specifying constraints. The current proof-of-
concept implementation supports an arbitrary number of constraints involving
arithmetic operations, bit operations, and comparisons. These constraints are
combined using logic operations. The DSL’s grammar is shown in the appendix
in Figure 5. The advantage of a DSL is that constraints can be complex and

Taming the Linux Memory Allocator for Rapid Prototyping 7

can be extended with functions in a backward-compatible manner. MAPAlloc
parses the grammar to apply the constraints to the memory allocations. While
the current implementation does not yet support stateful constraints, this is not
a limitation of the design. Future contributions are encouraged to extend the
DSL with this capability.

3.3 Implementation

To make the usage of MAPAlloc as simple as possible, we implement it as a
Linux kernel module instead of a kernel patch. While this reduces the flexibility
of MAPAlloc and impacts the performance, it greatly enhances the maintainabil-
ity. Furthermore, using kernel modules is often possible when a custom kernel is
difficult to install, such as on ARM and RISC-V development boards or smart-
phones. The kernel module is written in C and hooks the Linux kernel’s memory
management functions to manipulate memory allocations. We do not rely on
architecture-specific functions, making MAPAlloc compatible with a wide range
of architectures. We successfully verify its functionality on x86, ARMv8, and
RISC-V.

Our implementation hooks the __alloc_pages function of the Linux kernel.
This function is the lowest-level function responsible for returning a physical
page. It handles all single-page allocations, both implicit and explicit allocations.
Thus, we only have to hook here to cover the majority of cases for getting a user-
accessible physical page. We use a kretprobe to hook into this function before
it returns. Due to our implementation as a kernel module, we can neither change
nor replace the function generically. Thus, we have to resort to such a probe.

We opt for the return probe, as this allows using the results of the kernel
function while being able to change the return value. In the handler of the return
probe, we have access to the page allocated by the kernel. We can either directly
use this page if it fulfills the constraints, replace it with a page from our pool,
or reject it, forcing the kernel to allocate a new page.

Additionally, we hook vm_mmap_pgoff, which is used for mmap functional-
ity. Hooking this function allows for intercepting explicit multi-page allocations,
replacing them with pages that fulfill the constraints.

3.4 Usage

Listing 1 shows a sample usage of MAPAlloc. The main workflow is to create
a new process via fork, provide the DSL-based constraints to MAPAlloc for the
new process, and then replace the constrained process with the target process via
exec*. This workflow ensures that all pages of the process fulfill the constraints.
While MAPAlloc can also be applied to a running process, it only affects the
pages allocated after applying MAPAlloc. However, we can also support this use
case by migrating existing physical pages of the target process to ones that fulfill
the constraints.

8 Zhang et al.

1 const char* constraint = "((x >> 12) & 31 >= 1) && "
2 "((x >> 12) & 31 <= 4)";
3 if(mapalloc_init()) {
4 printf("Error initializing MAPAlloc, did you load the module?\n");
5 return 1;
6 }
7 pid_t pid;
8 if((pid = fork()) != 0) {
9 mapalloc_constrain(pid, constraint);

10 execve([...])
11 }

Listing 1: Example usage of MAPAlloc for starting a new process that only
receives physical pages mapping to a subset of cache sets.

i(a) = a6, a7, a8, a9 ⊕ a28 ⊕ a29, a10 ⊕ a27 ⊕ a30, a11 ⊕ a26 ⊕ a31

a12 ⊕ a25 ⊕ a32, a13 ⊕ a24 ⊕ a33, a14 ⊕ a23 ⊕ a34, a15 ⊕ a22 ⊕ a35, a16 ⊕ a21 ⊕ a36

h(a) = a17, a18, a19

Fig. 2: Set index function i and slice hash function h for EPYC 9124 (Zen 4).
As both functions do not share bits, they can be trivially combined. The total
number of combined colors is the product of the colors provided by set and slices.

4 Case Studies

In this section, we demonstrate different use cases for MAPAlloc. We demon-
strate that MAPAlloc makes it easy to prototype page coloring, both for cache
sets and DRAM rows. Additionally, we introduce layered page coloring for non-
linear microarchitectural hash functions, showing that combining microarchitec-
tural hash functions enables finer-grained coloring. We also show that MAPAlloc
helps prototyping attacks by artificially limiting the physical address space, al-
lowing the use of incomplete cache-slice functions.

4.1 Eviction Set Prevention

In this case study, we focus on the color attributes of the cache slice and the
cache sets. With MAPAlloc, we evaluate the page coloring prototype against
eviction-based cache side-channel attacks.

The cache set index function is typically an identity function over parts of
the physical address. For a cache with S sets, bits a6 . . .6+log2(S) of the physical
address a determine the set index. While an attacker can control bits within
a page, the bits a12 . . .6+log2(S) can still contribute to page coloring. Coloring
based on the cache set is trivial to implement using MAPAlloc, as the constraint
is a simple bitmask on the physical address.

Taming the Linux Memory Allocator for Rapid Prototyping 9

Table 1: The result of our coloring isolation. Color Num is the number of colors
provided by using set partition or slice partition, which is not controllable by an
attacker who can control bits 6-12. EVC_Time indicates how long an attacker
needs to build eviction sets via the tool evsets [60]. ✗ indicates that eviction set
building failed.

CPU Coloring Element Color Num EVC_Time After coloring

Intel Core i3-5010U Cache Set 64 16 s ✗

AMD EPYC 7252 Cache Set 64 30 s ✗

AMD EPYC 9124 Cache Set 32 ✗ ✗

AMD EPYC 9124 Cache Slice 8 ✗ ✗

Layered Page Coloring As regular page coloring is limited to 32 or 64 colors
on current x86 CPUs, we introduce layered page coloring, combining multiple
indexing functions to create more colors. One such additional indexing function
is the cache-slice function that partitions the cache into multiple slices. However,
the cache set and slice functions have overlapping bits, making this combination
non-trivial. The increased number of colors depends on the number of overlap-
ping bits used in both functions and how the attacker-controllable bits a6 . . .11
affect the slice hash function. In such cases, a linear algebra-based approach
based on the kernel of the hash function can be used [19]. We reimplement this
approach, which allows efficient computations of memory partitions based on
multiple linear hash functions. On AMD EPYC 9124, the cache-index function
i and slice hash h do not interfere with each other, as shown in Figure 2. There-
fore, it is trivial to compute a good partition that splits both cache sets and
slices into different colors.

As the case of non-linear function has yet to be solved generically, we model
the problem using graphs to calculate the number of available colors. While
our approach scales exponentially, the problem we solve is small enough to be
practical. We refer to the combination of cache slice and cache set as extended set.
We evaluate which extended set the attacker can reach for all physical addresses
when controlling the page offset. The address and the reachable extended set
are connected nodes in a graph. On the full graph, we calculate the number
of components, i.e., parts of the graph that are not connected. This number is
equivalent to the number of colors available for page coloring. Additionally, each
component contains the extended set for a color that can be used in MAPAlloc.
We calculate the number of available colors for an Intel Coffee Lake with 6
slices based on the non-linear slice function provided by Gerlach et al. [15]. This
non-linear slice function doubles the number of usable colors to 64.

To evaluate the page coloring as a prototype mitigation, we use a global
variable as the target. We allocate a 128MB memory buffer and select candidate
addresses from this buffer to construct an eviction set, using the eviction-set
generation from Vila et al. [60]. Afterward, we calculate the color of the target
variable based on the cache sets or cache slices function. We assume an L3

10 Zhang et al.

Prime+Probe attacker can access all the remaining page colors except for the
one the target variable has. Hence, we deploy this memory constraint to avoid
allocating addresses with the same color and repeat the eviction set construction.
We evaluate this policy on various machines, as shown in Table 1. The tool fails
to find eviction sets on AMD EPYC 9124, where effective eviction construction
is naturally complex, as the non-inclusive L3 cache is divided into 256 partitions
(colors). All test machines run Ubuntu 22.04. The Intel machine uses the Linux
kernel 5.15.0, and the AMD EPYC machines use the Linux kernel 6.8.0.

Under the mitigation policy of MAPAlloc, our results show that a Prime+
Probe attacker cannot build eviction sets for the target set on any test machine.
We validate the effectiveness of this mitigation by repeating the building process
100 times. None of these repetitions found an eviction set. On AMD EPYC 9124,
each eviction address must have the same color as the target, chosen from 256
possible colors. As a proof-of-concept to demonstrate the isolation of coloring,
we successfully build eviction sets by refining allocations to reside in the same
slice and set as the victim variable.

4.2 Mitigating DRAMA and Rowhammer

In this section, we demonstrate the use of page coloring to prevent DRAMA
and Rowhammer attacks. Our approach to preventing DRAMA uses reverse-
engineered DRAM mapping functions to implement a page coloring scheme that
avoids row conflicts between victim and attacker.

Layered page coloring can be employed, extending our approach to mitigate
DRAMA or Rowhammer and cache-based side-channel attacks.
DRAMA. DRAMA attacks [45] exploit the conflict of the DRAM row buffer.
The row buffer is shared within a DRAM bank; the bank to which a memory ad-
dress belongs is determined by the DRAM mapping function. This function uses
implementation-dependent physical address bits to map to a channel, DIMM,
rank, and bank. We use open-source tooling [21] to reverse-engineer the map-
ping functions on Intel CPUs with different memory configurations. Similar to
the cache-slice function, if bits within the range of a 4 kB page are used in the
mapping function, MAPAlloc cannot rely on them to create coloring. Therefore,
we only impose constraints on bits higher than 12.

Our goal in protecting against DRAMA attacks is to create two disjoint pools
of addresses D and N . It must hold that for DRAM bank b

∀a ∈ D, bank(a) = b and ∀a ∈ N,bank(a) ̸= b

If these constraints are fulfilled, addresses in D and N map to different banks,
thereby preventing row buffer conflicts.We can achieve the desired coloring by
first allocating D, which is possible as we know the DRAM mapping function,
and then blocking all addresses mapping to b for further allocations. In practice
we choose |N | = 4kB and |D| = 1MB. To evaluate our coloring scheme, we
test it on multiple different machines as listed in Table 2. Our results show that
independent of the DRAM mapping function, we can prevent row buffer conflict

Taming the Linux Memory Allocator for Rapid Prototyping 11

Table 2: The result of our DRAM banks coloring isolation. ✗ denotes that the
attacker fails to create row buffer conflicts.

CPU Banks Mapping Color Num. After Coloring

Intel Core i3-5010U a14 ⊕ b17, a15 ⊕ b18, a16 ⊕ b19 8 ✗

Intel Core i9-9980HK a14 ⊕ b18, a15 ⊕ b19, a16 ⊕ b20, a17 ⊕ b21 16 ✗

for the address set N via coloring. Therefore, an attacker cannot mount DRAMA
attacks on addresses in N , as they cannot access addresses aliasing to the same
row buffer.
Rowhammer. Page coloring mitigations against Rowhammer have been pro-
posed in previous work [37, 32]. One mitigation idea implemented in [32] is to
add guard rows next to rows one wants to protect against Rowhammer. More
precisely, one computes the row index rv of victim data via its physical address
and then adds n guard rows at rv ± n. The number of guard rows depends on a
DRAM-dependent parameter called the blast radius [33]. The blast radius is the
maximal distance from a hammered row at which bit flips are reliably observed.
MAPAlloc can easily add the guard rows by adding constraints that only allow
sensitive rows to be n rows away from attacker-controlled rows. If implemented
naively, this approach drastically reduces the available memory depending on the
choice of n. However, the memory overhead can be reduced if the guard rows
are filled with data that is not sensitive to bit flips. Furthermore, as MAPAlloc
is implemented in the kernel, we can transparently apply error correction to the
guard rows. Errors in the guard rows can be detected and corrected by the er-
ror correction code, while sensitive rows are protected by the fact that they are
out of the blast radius. Similar layered mitigations using error correction [26, 10]
have already been explored in related work.

A related approach [37] proposes subarray groups to partition the DRAM
more efficiently. However, we do not implement this approach because MAPAlloc
currently does not support hypervisor-based applications, and subarray groups
only make sense in a hypervisor context.

4.3 Prime+Probe with Incomplete Non-linear Slice Function

While linear cache-slice functions have been thoroughly explored and reverse-
engineered [53, 39, 24, 36, 20], non-linear cache-slice functions remain limited in
availability. Although they have been reverse-engineered for some CPUs [22,
66, 40, 15], the results are often incomplete because the functions only work for
systems with limited memory. For example, the cache-slice functions for Intel
Coffee Lake and Alder Lake as reported by Gerlach et al. [15] only work for
systems where the highest physical address does not have any bits above bit 31
set. Thus, this limits the applicability to systems with less than 8GB of memory.

For prototyping attacks, MAPAlloc can be used to artificially limit the avail-
able physical memory of the system. Thus, MAPAlloc ensures that the incom-
plete slice function is still valid for all allocated pages. We evaluate this by

12 Zhang et al.

mounting a Prime+Probe attack on an Intel Xeon E-2176M (Coffee Lake) with
6 cores with the slice function of Gerlach et al. [15]. We rely on MAPAlloc to
restrict the physical memory for attacker and victim to 2GB to ensure we can
always apply the slice function.

We target the AES T-Table implementation in OpenSSL. To align with prior
research, we use OpenSSL 1.0.1e [47, 14, 17, 34]. We base our implementation on
the one from Gruss et al. [17] but replace the cache-slice function and apply
MAPAlloc to restrict the memory. With these adaptions, we recover, on average,
more than 97% of the key correctly. This result shows that MAPAlloc helps to
test microarchitectural attacks that would otherwise only work if the system is
physically changed, i.e., if DRAM is physically removed.

5 Evaluation

In this section, we evaluate the functionality and performance of MAPAlloc
across architectures.

5.1 Functionality

We test the functionality of MAPAlloc on various microarchitectures among x86,
ARM, and RISC-V architectures. Table 3 lists the machines used for testing the
proof-of-concept constraint outlined in Listing 1. The slice functions and DRAM
addressing functions used in case studies are determined via open-source reverse-
engineering tools [45, 15].

In our tests, we first deploy the memory policy to constrain the page color for
upcoming allocations. Then, we allocate memory via mmap, global variables, and
heap variables to verify if their physical addresses fulfill the specified constraints.
Our results demonstrate that MAPAlloc can manage memory allocation and
maintain page coloring on all tested machines.

5.2 Performance

In the following section, we evaluate the performance of MAPAlloc.

Pre-Allocation When initializing, MAPAlloc pre-allocates pages in kernel mode
to avoid expensive search operations at runtime. The cost of this operation pri-
marily depends on the number of pages we consider and check against our con-
straints. In our implementation, this number is set to 87.5% of the system’s
unused memory. For a freshly booted system, the pre-allocation time depends
mainly on the amount of available DRAM. On an AMD EPYC 9124 with 16GB
of DRAM, pre-allocation takes roughly 4.5 s. On the Intel Core i3-5010U with
only 8GB of DRAM, it takes about 1.8 s. Since pre-allocating pages with MA-
PAlloc is a one-time initialization effort, it does not directly influence the runtime
of user applications. We confirm this by running the popular 7-zip LZMA data
compression benchmark [42] alongside another coloring process that pre-allocates
pages. After 10 iterations, the average impact remains at 0.4%.

Taming the Linux Memory Allocator for Rapid Prototyping 13

Table 3: CPUs tested for MAPAlloc.

CPU µarch Release Last-level Cache Known Functions

Slice DRAM

Intel Core i5-2520M Sandy Bridge 2011 Inclusive
Intel Core i3-5010U Broadwell 2015 Inclusive
Intel Xeon E3-1505M Skylake 2015 Inclusive
Intel Xeon E-2176M Coffee Lake 2018 Inclusive
Intel i3-8130U Kaby Lake R 2018 Inclusive
Intel Celeron N4500 Jasper Lake 2021 Non-inclusive
AMD EPYC 7252 Rome 2019 Non-inclusive
AMD EPYC 9124 Genoa 2023 Non-inclusive
Broadcom BCM2711 Cortex-A72 2019 Inclusive N/A
Allwinner D1 RISC-V C906 2021 N/A N/A

The icons represent the knowledge of a function. : known or found by open-
sourced tools [45, 15], : unknown, : discovered in this work

104 105 106 107 108

10−5

10−4

10−3

10−2

Allocation Size (bytes)

M
ea

n
T

im
e

(s
ec

on
ds

)

Allocation

EPYC 9124
BCM2711
MAPAlloc
Linux

104 105 106 107 108

10−5

10−4

10−3

10−2

10−1

Allocation Size (bytes)

M
ea

n
T

im
e

(s
ec

on
ds

)

Release

EPYC 9124
BCM2711
MAPAlloc
Linux

Fig. 3: Mean time to allocate and release memory blocks of different sizes with
MAPAlloc and Linux (n = 4096 per sample, Linux v6.8.0). Less is better.

Memory Allocation To assess the performance of our memory allocator, we
measure the mean time required for allocating and releasing differently-sized
mappings. The results of this evaluation for the AMD EPYC 9124 (x86_64)
and the Broadcom BCM2711 (ARMv8) are shown in Figure 3. For small allo-
cations of 8 or fewer pages, MAPAlloc’s page allocator performs slightly better
than Linux. This is likely due to the low complexity of our implementation as
compared to Linux’s allocation routines. However, our prototype implementation
does not implement bulk allocations but instead remaps every page individually.
Furthermore, MAPAlloc zeroes the pages during initialization instead of during
cleanup. Hence, we observe significantly longer allocation times than with Linux
for larger memory blocks, with the time growing roughly proportionally to the
allocation size. On the other hand, releasing pages with MAPAlloc is consistently
faster than with Linux, up to 7 times faster. Note that when freeing pages, MA-

14 Zhang et al.

0 20 40 60 80 100
60

80

100

% cache sets used

%
T

hr
ou

gh
pu

t

LZMA Compression

EPYC 9124
Core i3-5010U
BCM2711

0 20 40 60 80 100

98

99

100

% cache sets used

%
T

hr
ou

gh
pu

t

LZMA Decompression

EPYC 9124
Core i3-5010U
BCM2711

Fig. 4: Mean LZMA de/compression throughput with limited cache access, nor-
malized by baseline performance (7-zip v23.01, 1 thread)

PAlloc only clears the user page table entries and adds the pages back to the
pool. In contrast, Linux might run more expensive management tasks, such as
attempting to merge smaller page buddies into larger ones.

Microarchitectural Effects One of the applications we propose for MAPAl-
loc is studying the runtime effects of page coloring schemes on software. To
demonstrate MAPAlloc’s effectiveness for this purpose, we investigate the 7-zip
compression benchmark while preventing access to parts of the cache. See Fig-
ure 4 for the results of this evaluation. As expected, we observe a decline in
throughput on the AMD EPYC 9124 and Intel Core i3-5010U, as we reduce the
number of available cache sets. This effect is most pronounced in the compres-
sion benchmark. For example, restricting the available cache sets to only 512
out of 16384 on the AMD EPYC 9124 degrades the compression throughput to
62.2% of the throughput with the full cache. While we also observe performance
degradation in the decompression benchmark, this is less significant, with the
throughput being reduced to only 97.5%. Hence, we conclude that LZMA com-
pression on x86_64 significantly benefits from a large cache, whereas this is not
necessarily the case with LZMA decompression.

6 Discussion

In this section, we discuss the applicability to virtual machines, hardware mech-
anisms with similar capabilities, implementation limitations, and related work.

6.1 Virtual Machines

Our implementation of MAPAlloc is limited to non-virtualized environments.
MAPAlloc neither supports running in the hypervisor to constrain virtual ma-
chines nor inside virtual machines. Conceptually, nothing hinders implementing

Taming the Linux Memory Allocator for Rapid Prototyping 15

MAPAlloc in a hypervisor to apply constraints to entire virtual machines. How-
ever, similar approaches for virtual machines have already been implemented by
prior work [61]. Therefore, we leave integrating support for arbitrary memory
constraints into such hypervisors for future work.

Running MAPAlloc inside a virtual machine is more challenging. While MA-
PAlloc does run inside a virtual machine, it is functionally inoperable. The reason
is that physical addresses inside a virtual machine, so-called guest physical ad-
dresses, are not actual physical addresses. Guest physical addresses are virtual
addresses on the host translated to real physical addresses using extended page
tables. Thus, the virtual machine does not know physical addresses. Constraints
enforced by MAPAlloc in virtual machines degenerate to constraints on virtual
addresses and can not be used to prototype defenses or attacks. This limitation
can be overcome by adding a hypervisor part to MAPAlloc that could provide
the actual physical address to MAPAlloc running inside the virtual machine.

6.2 Hardware Mitigations

Numerous hardware-based isolation techniques offer an orthogonal alternative
to software approaches like MAPAlloc. For instance, Intel’s Cache Allocation
Technology (CAT) partitions the cache structure among different threads, pro-
viding isolation. Intel CAT was considered as a potential mitigation against
cache side-channel attacks [35]. However, recent work [65, 43] has demonstrated
its inefficiency. On AMD EPYC server CPUs, the new cache range reservation
feature [1] enables the hypervisor to lock specific L3 cache ways for a designated
system memory range. Although this feature was not originally intended for se-
curity purposes, it effectively isolates the specified system memory range from
the rest of the memory in the L3 cache. Configuring this range involves two
model-specific registers shared across an entire core complex, which limits its
application to multiple processes. Ultimately, neither Intel nor AMD provides a
hardware feature that mitigates DRAM attacks like DRAMA.

6.3 Related Work

Related work on partitioning memory, also called cache coloring, has been ex-
plored for a wide range of applications. Initially, cache coloring aimed to improve
performance by optimizing cache utilization [28, 7, 58]. These approaches ensure
a good cache hit rate for frequently used memory pages. Security applications of
memory coloring have been explored by Hofmann et al. [19]. These applications
mainly include mitigating cache-based side channel attacks [67, 54]. Similar to
cache coloring, separating DRAM banks into multiple domains has been pro-
posed as a Rowhammer mitigation in previous work [37, 32].

6.4 Implementation Limitations

In the following, we discuss limitations specific to our implementation of MAPAl-
loc. We note that overcoming these limitations is merely an engineering effort.

16 Zhang et al.

Corner Cases. Our implementation of MAPAlloc considers the common
cases of memory allocation in the Linux kernel. However, due to the complexity
of the Linux kernel, we are likely missing corner cases that are not handled.
As MAPAlloc is not designed as a security mechanism but rather as a rapid
prototyping framework, we consider such corner cases as unproblematic.

Exempted Pages. While MAPAlloc can enforce constraints on most pages,
there are some pages where constraints cannot be enforced. We identify two
categories of such pages. First, kernel pages mapped to the user space, such as
vDSO [13]. As we do not enforce constraints on kernel pages, these pages are
entirely out of scope for MAPAlloc. Second, implicit or explicit shared memory,
if not all applications sharing the memory have compatible constraints. Such
shared memory can also happen without a developer knowing, e.g., if the oper-
ating system uses page deduplication [57].

7 Conclusion

We introduced MAPAlloc, a versatile, cross-architecture framework for efficiently
prototyping defenses and attacks on Linux that require control over physical
memory allocations. Using a simple domain-specific language, MAPAlloc en-
ables precise control over physical memory allocation across x86, ARMv8, and
RISC-V architectures. MAPAlloc enables rapid implementation and evaluation
of mitigations, such as page coloring. Additionally, MAPAlloc allows for quickly
extending such techniques, as we show with layered page coloring, which signif-
icantly expands the number of cache colors from 32 to 256 on modern CPUs.
We achieve this increase in isolation domains by reverse-engineering AMD Zen
4’s cache indexing function and combining it with our reverse-engineered cache-
slice function. By simplifying and accelerating the prototyping process, MAPAl-
loc bridges the gap between theoretical concepts and practical implementations,
helping to improve the robustness of system security.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their valuable feedback
and suggestions that helped improve the paper.

References

1. AMD64 Architecture Programmer’s Manual (2024)
2. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin, T.:

ANVIL: Software-based protection against next-generation Rowhammer attacks.
ACM SIGPLAN Notices (2016)

3. Bennett, T., Saroiu, S., Wolman, A., Cojocar, L.: Panopticon: A complete in-dram
rowhammer mitigation. In: Workshop on DRAM Security (DRAMSec) (2021)

Taming the Linux Memory Allocator for Rapid Prototyping 17

4. Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R.: CAn’t touch this:
Software-only mitigation against Rowhammer attacks targeting kernel memory.
In: USENIX Security Symposium (2017)

5. Bray, B.K., Lunch, W.L., Flynn, M.J.: Page allocation to reduce access time of
physical caches (1990), http://i.stanford.edu/pub/cstr/reports/csl/tr/90/
454/CSL-TR-90-454.pdf

6. Brumley, D., Boneh, D.: Remote Timing Attacks Are Practical. In: USENIX Se-
curity Symposium (2003)

7. Bugnion, E., Anderson, J.M., Mowry, T.C., Rosenblum, M., Lam, M.S.: Compiler-
directed page coloring for multiprocessors. ACM SIGPLAN Notices (1996)

8. Corbet, J.: Some kernel memory-allocation improvements (2015), https://lwn.
net/Articles/658081/

9. Corbet, J.: Remote per-CPU page list draining (2022), https://lwn.net/
Articles/884448/

10. Dio, A.D., Koning, K., Bos, H., Giuffrida, C.: Copy-on-Flip: Hardening ECC Mem-
ory Against Rowhammer Attacks. In: NDSS (2023)

11. Easdon, C., Schwarz, M., Schwarzl, M., Gruss, D.: Rapid Prototyping for Microar-
chitectural Attacks. In: USENIX Security (2022)

12. Frigo, P., Vannacci, E., Hassan, H., van der Veen, V., Mutlu, O., Giuffrida, C., Bos,
H., Razavi, K.: TRRespass: Exploiting the Many Sides of Target Row Refresh. In:
S&P (2020)

13. Frysinger, M.: vdso(7) — linux manual page (2024)
14. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Timing At-

tacks and Countermeasures on Contemporary Hardware. Journal of Cryptographic
Engineering (2016)

15. Gerlach, L., Schwarz, S., Faroß, N., Schwarz, M.: Efficient and Generic Microar-
chitectural Hash-Function Recovery. In: S&P (2024)

16. Gerlach, L., Thomas, F., Pietsch, R., Schwarz, M.: A Large-Scale Rowhammer
Reproduction Study Using the Blacksmith Fuzzer. In: ESORICS (2023)

17. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: A Fast and
Stealthy Cache Attack. In: DIMVA (2016)

18. Gruss, D., Spreitzer, R., Mangard, S.: Cache Template Attacks: Automating At-
tacks on Inclusive Last-Level Caches. In: USENIX Security Symposium (2015)

19. Hofmann, J., Fournet, C., Köpf, B., Volos, S.: Gaussian elimination of side-
channels: Linear algebra for memory coloring. In: ACM CCS (2024)

20. Hund, R., Willems, C., Holz, T.: Practical Timing Side Channel Attacks against
Kernel Space ASLR. In: S&P (2013)

21. IAIK: DRAMA Reverse-Engineering Tool and Side-Channel Tools (2016), https:
//github.com/IAIK/drama

22. Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint
Archive, Report 2015/898 (2015)

23. Intel Corporation: Guidelines for Mitigating Timing Side Channels Against
Cryptographic Implementations (2020), https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/secure-
coding/mitigate-timing-side-channel-crypto-implementation.html

24. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in intel processors. In: Euromicro Conference on Digital System
Design (2015)

25. Jin, J., McMurtry, E., Rubinstein, B.I.P., Ohrimenko, O.: Are We There Yet?
Timing and Floating-Point Attacks on Differential Privacy Systems. In: S&P (2022)

18 Zhang et al.

26. Juffinger, J., Lamster, L., Kogler, A., Eichlseder, M., Lipp, M., Gruss, D.: Csi:
Rowhammer-cryptographic security and integrity against rowhammer. In: IEEE
S&P (2022)

27. Juffinger, J., Lamster, L., Kogler, A., Eichlseder, M., Lipp, M., Gruss, D.: Csi:
Rowhammer-cryptographic security and integrity against rowhammer. In: IEEE
S&P (2023)

28. Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed caches.
TOCS (1992)

29. Kim, T., Peinado, M., Mainar-Ruiz, G.: StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In: USENIX Security Sym-
posium (2012)

30. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In: ISCA (2014)

31. Kocher, P.C.: Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO (1996)

32. Konoth, R.K., Oliverio, M., Tatar, A., Andriesse, D., Bos, H., Giuffrida, C., Razavi,
K.: ZebRAM: Comprehensive and compatible software protection against rowham-
mer attacks. In: OSDI (2018)

33. Lang, Z., Jattke, P., Marazzi, M., Razavi, K.: Blaster: Characterizing the blast
radius of rowhammer. In: Workshop on DRAM Security (DRAMSec) (2023)

34. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: Cache
Attacks on Mobile Devices. In: USENIX Security Symposium (2016)

35. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Cata-
lyst: Defeating last-level cache side channel attacks in cloud computing. In: HPCA
(2016)

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-Level Cache Side-Channel
Attacks are Practical. In: S&P (2015)

37. Loughlin, K., Rosenblum, J., Saroiu, S., Wolman, A., Skarlatos, D., Kasikci, B.:
Siloz: Leveraging dram isolation domains to prevent inter-vm rowhammer. In:
SOSP (2023)

38. Marazzi, M., Solt, F., Jattke, P., Takashi, K., Razavi, K.: Rega: Scalable rowham-
mer mitigation with refresh-generating activations. In: S&P (2023)

39. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
Engineering Intel Complex Addressing Using Performance Counters. In: RAID
(2015)

40. McCalpin, J.D.: Mapping addresses to l3/cha slices in intel processors. Tech. rep.
(2021)

41. OpenSSL: OpenSSL: The Open Source toolkit for SSL/TLS (2019), http://www.
openssl.org

42. Pavlov, I.: 7-zip (2023), https://7-zip.org/, v23.01
43. Pawel Wieczorkiewicz and Rodrigo Branco and Ben Lee: On the Effectiveness of

Intel’s CAT as a Side-Channel Mitigation Technology (2024), https://langsechq.
gitlab.io/spw24/papers/LangSec2024-Branco-CAT-paper.pdf

44. Percival, C.: Cache Missing for Fun and Profit. In: BSDCan (2005)
45. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: Exploit-

ing DRAM Addressing for Cross-CPU Attacks. In: USENIX Security Symposium
(2016)

46. Pornin, T.: BearSSL: A smaller SSL/TLS library (2022), https://www.bearssl.
org

Taming the Linux Memory Allocator for Rapid Prototyping 19

47. Purnal, A., Turan, F., Verbauwhede, I.: Prime+Scope: Overcoming the Observer
Effect for High-Precision Cache Contention Attacks. In: CCS (2021)

48. Qiao, R., Seaborn, M.: A New Approach for Rowhammer Attacks. In: International
Symposium on Hardware Oriented Security and Trust (2016)

49. Qureshi, M.K.: CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping. In: IEEE MICRO (2018)

50. Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.: Flip feng
shui: Hammering a needle in the software stack. In: USENIX Security Symposium
(2016)

51. Saileshwar, G., Qureshi, M.: MIRAGE: Mitigating conflict-based cache attacks
with a practical fully-associative design. In: USENIX Security Symposium (2021)

52. Schwarz, M., Lipp, M., Gruss, D., Weiser, S., Maurice, C., Spreitzer, R., Man-
gard, S.: KeyDrown: Eliminating Software-Based Keystroke Timing Side-Channel
Attacks. In: NDSS (2018)

53. Seaborn, M.: L3 cache mapping on Sandy Bridge CPUs (April 2015),
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-
sandy-bridge-cpus.html, retrieved on June 26, 2015

54. Shi, J., Song, X., Chen, H., Zang, B.: Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In: DSN-W (2011)

55. Shusterman, A., Kang, L., Haskal, Y., Meltser, Y., Mittal, P., Oren, Y., Yarom,
Y.: Robust Website Fingerprinting Through The Cache Occupancy Channel. In:
USENIX Security Symposium (2019)

56. Sun, K., Branco, R., Hu, K.: A New Memory Type Against Speculative Side Chan-
nel Attacks (2019)

57. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory Deduplication as a Threat to
the Guest OS. In: EuroSys (2011)

58. Taylor, G., Davies, P., Farmwald, M.: The tlb slice—a low-cost high-speed address
translation mechanism. In: ISCA (1990)

59. The Mbed TLS Contributors: Security (2024), https://mbed-tls.readthedocs.
io/en/latest/project/long-term-plans/#security

60. Vila, P., Köpf, B., Morales, J.: Theory and Practice of Finding Eviction Sets. In:
S&P (2019)

61. Volos, S., Fournet, C., Hofmann, J., Köpf, B., Oleksenko, O.: Principled microar-
chitectural isolation on cloud cpus. In: ACM CCS (2024)

62. Weber, D., Thomas, F., Gerlach, L., Zhang, R., Schwarz, M.: Indirect Meltdown:
Building Novel Side-Channel Attacks from Transient Execution Attacks. In: ES-
ORICS (2023)

63. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard,
S.: ScatterCache: Thwarting Cache Attacks via Cache Set Randomization. In:
USENIX Security Symposium (2019)

64. wolfSSL: wolfSSL: Embedded TLS Library (2023), https://www.wolfssl.com/
65. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C., Campbell, R., Torrellas, J.:

Attack directories, not caches: Side channel attacks in a non-inclusive world. In:
S&P (2019)

66. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel Last-Level
Cache. Cryptology ePrint Archive, Report 2015/905 (2015)

67. Ye, Y., West, R., Cheng, Z., Li, Y.: Coloris: a dynamic cache partitioning system
using page coloring. In: PACT (2014)

68. Zhang, R., Kim, T., Weber, D., Schwarz, M.: (M)WAIT for It: Bridging the Gap
between Microarchitectural and Architectural Side Channels. In: USENIX Security
(2023)

20 Zhang et al.

⟨expression⟩ ::= ⟨term⟩
| ⟨expression⟩ || ⟨term⟩

⟨term⟩ ::= ⟨factor⟩
| ⟨term⟩ && ⟨factor⟩

⟨factor⟩ ::= ⟨bitwise-term⟩
| ⟨factor⟩ | ⟨bitwise-term⟩

⟨bitwise-term⟩ ::= ⟨bitwise-factor⟩
| ⟨bitwise-term⟩ ^ ⟨bitwise-factor⟩

⟨bitwise-factor⟩ ::= ⟨bitwise-shift⟩
| ⟨bitwise-factor⟩ & ⟨bitwise-shift⟩

⟨bitwise-shift⟩ ::= ⟨arithmetic⟩
| ⟨bitwise-shift⟩ « ⟨arithmetic⟩
| ⟨bitwise-shift⟩ » ⟨arithmetic⟩

⟨arithmetic⟩ ::= ⟨term1 ⟩
| ⟨arithmetic⟩ + ⟨term1 ⟩
| ⟨arithmetic⟩ - ⟨term1 ⟩

⟨term1 ⟩ ::= ⟨factor1 ⟩
| ⟨term1 ⟩ * ⟨factor1 ⟩
| ⟨term1 ⟩ / ⟨factor1 ⟩
| ⟨term1 ⟩ % ⟨factor1 ⟩

⟨factor1 ⟩ ::= ⟨primary⟩
| ~ ⟨factor1 ⟩

⟨primary⟩ ::= ⟨literal⟩
| (⟨expression⟩)

⟨relational-expression⟩ ::= ⟨expression⟩ == ⟨expression⟩
| ⟨expression⟩ != ⟨expression⟩
| ⟨expression⟩ < ⟨expression⟩
| ⟨expression⟩ > ⟨expression⟩
| ⟨expression⟩ <= ⟨expression⟩
| ⟨expression⟩ >= ⟨expression⟩

⟨literal⟩ ::= ⟨number⟩
| ⟨boolean⟩

⟨number⟩ ::= ⟨digit⟩+

⟨boolean⟩ ::= true
| false

⟨digit⟩ ::= 0-9

Fig. 5: Grammar for the memory constraint DSL.

