
Reviving Meltdown 3a

Daniel Weber, Fabian Thomas, Lukas Gerlach,
Ruiyi Zhang, and Michael Schwarz

CISPA Helmholtz Center for Information Security
Saarbrücken, Saarland, Germany

<firstname>.<lastname>@cispa.de

Abstract. Since the initial discovery of Meltdown and Spectre in 2017,
different variants of these attacks have been discovered. One often over-
looked variant is Meltdown 3a, also known as Meltdown-CPL-REG. Even
though Meltdown-CPL-REG was initially discovered in 2018, the avail-
able information regarding the vulnerability is still sparse.
In this paper, we analyze Meltdown-CPL-REG on 19 different CPUs from
different vendors using an automated tool. We observe that the impact
is more diverse than documented and differs from CPU to CPU. Surpris-
ingly, while the newest Intel CPUs do not seem affected by Meltdown-
CPL-REG, the newest available AMD CPUs (Zen3+) are still affected
by the vulnerability. Furthermore, given our attack primitive Counter-
Leak, we show that besides up-to-date patches, Meltdown-CPL-REG can
still be exploited as we reenable performance-counter-based attacks on
cryptographic algorithms, break KASLR, and mount Spectre attacks.
Although Meltdown-CPL-REG is not as powerful as other transient-
execution attacks, its attack surface should not be underestimated.

1 Introduction

Microarchitectural side-channel attacks have been known for several decades [31].
These attacks exploit the side effects of CPU implementations to infer metadata
about actual data being processed by the CPU. Well-known examples of microar-
chitectural side-channel attacks include cache attacks, e.g., Flush+Reload [67] or
Prime+Probe [47], which have been used to leak cryptographic secrets [2, 67, 37]
or violate the privacy of users, e.g., by spying on user input [44, 19, 34, 55].
Another example of side-channel attacks are attacks based on the CPUs perfor-
mance counters [58, 12, 8]. However, these attacks are considered mitigated as
access to performance counters is restricted on modern CPUs [12].

In 2017, transient execution attacks were first discovered in the form of Melt-
down [36] and Spectre [30]. Shortly afterward, a variety of transient execution
attacks were discovered [10, 56, 61, 65, 40, 32, 51, 50]. One attack that is often
considered less powerful than other variations, and thus easily overshadowed by
the discovery of other variants, is Meltdown 3a [10, 6], later on, referred to as
Meltdown-CPL-REG in the extended transient-execution attack classification by
Canella et al. [10]. Meltdown-CPL-REG allows an unprivileged attacker to leak



2 Weber et al.

the content of system registers restricted to privileged access. After the discovery
of the attack, CPU vendors reacted with microcode updates to fix the vulner-
abilities [25, 6]. More precisely, CPU vendors fixed the vulnerability for system
registers containing confidential information, such as model-specific registers.

In this paper, we show that Meltdown-CPL-REG exposes a more complex
attack surface than originally thought, which allows an attacker to exploit it,
even 5 years after the initial discovery of the attack. Although the Meltdown
variant itself is known, there is no systematic analysis yet. Thus, we introduce
RegCheck, an automated tool to test x86 CPUs for various Meltdown-CPL-REG
variants. Our analysis using RegCheck reveals two main insights. First, CPUs
that are vulnerable to Meltdown-CPL-REG do not show the same leakage for all
system registers. Instead, the analysis shows that different CPUs expose leakage
of different system registers. Hence, the category Meltdown-CPL-REG is too
coarse-grained to determine if a CPU is affected. The official tables published by
Intel [25] comment only on the leakage of the rdmsr instruction. Nevertheless,
RegCheck shows that for some of these CPUs, there is at least one system register
that can be leaked. Second, the fact that a CPU is unaffected by the original
Meltdown attack, i.e., Meltdown-US-L1 [36, 10], does not imply that the CPU is
also unaffected by Meltdown-CPL-REG as we observe leakage until the newest
tested AMD CPUs. Our analysis shows that while Meltdown-CPL-REG was
mitigated using microcode updates for system registers containing confidential
data, Meltdown-CPL-REG is still possible on modern CPUs for those privileged
registers that are not considered confidential, including registers containing only
metadata about a program, such as performance counters.

Based on these observations, we introduce the attack primitive CounterLeak.
CounterLeak allows unprivileged attackers to read performance counters, thereby
leaking performance monitoring metadata about applications running on a sys-
tem. This shows that the state-of-the-art Meltdown-CPL-REG mitigations are
insufficient for protecting against side-channel leakage. In our proof-of-concept
attack, we read the performance counters to leak meta information about ap-
plications. We encode transiently-read data in the form of a Spectre attack
with 66.7 bit/s, but with a generic encoding gadget. We also break the secu-
rity mitigation Kernel Address Space Layout Randomization (KASLR) by leak-
ing meta information of the page-table walker when accessing potential kernel
pages. Furthermore, CounterLeak re-enables attacks that rely on performance
counters [7, 4]. These attacks are considered mitigated because the required per-
formance interface was made privileged. Our attack extracts an RSA key from a
square-and-multiply implementation based on MbedTLS. We demonstrate a full
key recovery of a 2048-bit key within 15min. We also show that CounterLeak can
be used to break the Zigzagger branch-shadowing mitigation [33]. While all these
attacks require that the underlying system has performance counters enabled,
this is the case for various performance-counter-based defenses that were pro-
posed [71, 29, 46, 69, 11, 43, 42, 63, 64, 72]. Thus, we stress that when designing
defense tools, it is crucial to evaluate the additional attack surface introduced
by these tools.



Reviving Meltdown 3a 3

To summarize, we make the following contributions:
1. We analyze 19 CPUs of different vendors using an automated tool, show-

ing that Meltdown-CPL-REG was never fully mitigated and can still be ex-
ploited. The analysis tool is open-source and can be found on GitHub1.

2. We use our side channel for a novel Spectre attack using performance counters
and to bypass KASLR based on the performance characteristics of the page-
table walker.

3. We re-enable attacks on cryptographic libraries.
Outline. Section 2 provides background. Section 3 discusses our analysis of

Meltdown-CPL-REG across different Intel and AMD CPUs. Section 4 presents
the CounterLeak primitive, and Section 5 evaluates the primitive. Section 6
shows 4 case studies based on the attack primitive. Section 7 discusses miti-
gations to prevent the exploitation of Meltdown-CPL-REG and CounterLeak.
Section 8 discusses related work and the generalization of our insights. Section 9
concludes.

Responsible Disclosure. We disclosed our findings to Intel on February
15, 2023 and AMD on February 16, 2023. While both vendors got back to us,
neither plan to roll out mitigations for the new findings.

2 Background

In this section, we provide the background for this paper. We introduce perfor-
mance counters as we attack this interface in the remainder of the paper. We
introduce side channels and transient-execution attacks, as these concepts are
crucial for the understanding of our attack implementation.

2.1 Performance Counters

Modern CPUs expose performance counters to help developers analyze and
benchmark their programs. Performance counters keep track of different mi-
croarchitectural events, such as the number of issued micro-operations or the
number of evicted cache lines from the L1D cache. Performance counters are
programmed to record a specific event. The current count of the event can be
read using the x86 instruction rdpmc. The privilege level needed to execute rdpmc
can be configured by the operating system. For example, Linux exposes this con-
figuration via the file /sys/devices/cpu/rdpmc. In the past, unprivileged access
to performance counters was exploited to mount side-channel attacks and break
KASLR [12, 58]. Thus, modern operating systems, such as Debian 11, Ubuntu
20.04, or Fedora 35, disallow the access to the performance monitoring interface.

2.2 Side Channels

The term side channel refers to a meta information leaking from a system that
can be used to reason about the actual inaccessible data being processed by
1 https://github.com/cispa/regcheck

https://github.com/cispa/regcheck


4 Weber et al.

the system. In CPU microarchitectures, this meta information occurs in various
forms, including power usage [35], access timings [47, 18], and contention [5,
16, 45]. An attack exploiting observable meta information is referred to as a
side-channel attack. Microarchitectural software-based side-channel attacks (in
the remainder of this paper just referred to as “side-channel attacks”) have been
demonstrated against cryptographic algorithms and libraries [47, 38, 67, 8], to
spy on users [55], and to break security boundaries [13, 17, 12]. Over the last few
decades, researchers have demonstrated side-channel attacks based on several
microarchitectural components, such as the CPU caches [47, 67, 18, 48], the
execution units [5, 52], or the component’s power consumption [35].

2.3 Transient-Execution Attacks

Transient-execution attacks exploit performance optimizations of the microar-
chitecture. They are split into two major categories, namely Meltdown-type and
Spectre-type attacks, based on the type of performance optimization they ex-
ploit [10, 27]. While Spectre-type attacks exploit branch predictors, Meltdown-
type attacks exploit faulting instructions for which the processor continues to
execute depending instructions. These instructions can compute with the val-
ues of the faulting instructions until the fault is recognized by the CPU and
the instruction stream is rolled back to before the faulting instruction. These
instructions that were executed but never architecturally visible because of the
roll-back, are called transient instructions [10, 27]. One Meltdown-type attack
that is typically considered less critical, is Meltdown-CPL-REG (initially called
Meltdown 3a) [6, 23, 10]. Meltdown-CPL-REG allows an unprivileged attacker
to leak the content of privileged system registers. Hereby, the attacker reads the
system registers via a designated instruction such as rdmsr and encodes the con-
tent into a microarchitectural element before the roll-back occurs. Afterward, the
attacker can decode this information using a side-channel attack, thus leaking
the system register’s content. To mitigate the impact of Meltdown-CPL-REG,
CPU vendors provide microcode updates for affected systems [25, 6].

3 Analysis of Meltdown-CPL-REG

For Meltdown-CPL-REG, microcode prevents the leakage of system registers
containing sensitive values. However, other registers containing meta-data about
applications can still be leaked, enabling another source of side-channel leakage.
We present the first systematic analysis of Meltdown-CPL-REG [6, 23, 10] to
analyze the remaining attack surface after applying state-of-the-art microcode
patches. To systematically analyze CPUs, we design RegCheck to test a CPU for
different Meltdown-CPL-REG variants automatically. Our analysis of 19 systems
leads to two main insights. First, if a system is vulnerable to Meltdown-CPL-
REG, this does not mean that all system registers are affected. Second, even fully
patched recent CPUs unaffected by the original Meltdown attack (Meltdown-US-
L1) [36] can be vulnerable to Meltdown-CPL-REG.



Reviving Meltdown 3a 5

Design and Implementation. Our prototype of RegCheck is developed
for Intel and AMD CPUs running Linux. Note that the same approach can be
ported to other architectures, e.g., to support Arm CPUs, as this is purely an
engineering task. RegCheck tests a list of different system registers that are either
only accessible for privileged users or can be configured to only allow privileged
access. The list is based on Intel’s list of affected registers [23]. We provide a
complete list of analyzed system registers in Table 1. The inner workings of
RegCheck can be broken down into two steps:

First, RegCheck changes the kernel parameters to a consistent state for the
measurements. More precisely, one CPU core is isolated using the isolcpus ker-
nel parameter, and unprivileged access to rdfsbase and rdgsbase is disabled
using the nofsgsbase kernel parameter. Similarly, the access to further system
registers which are not permanently restricted to privileged access, e.g., perfor-
mance counters (cf. Section 2.1), is configured to prevent unprivileged access to
these registers before testing. After applying these settings, RegCheck executes
on the isolated CPU core to reduce the system noise for its measurements. Next,
for each system register, RegCheck tries to reason about its exploitability. To
do so, RegCheck tries to exploit Meltdown-CPL-REG and encode 8 bits of the
system register into a lookup array. The encoding is done by transiently access-
ing the corresponding index of the array, e.g., if the leaked bits form the value
7, then an access to array[7 * N] is performed. The resulting fault can either
be suppressed or handled. For RegCheck we choose to handle the fault using
a signal handler as this approach is portable to all modern CPUs. Our imple-
mentation varies N from 1024 to 4096 bytes to find a good tradeoff between the
size of memory pages needed to encode the values while still preventing different
accessing from either directly going into the same cache line or prefetching other
array entries. Note that we choose to encode 8 bits instead of only 1 bit to distin-
guish actual leakage from system noise better. After encoding these bits, the tool
checks whether a transient access to any index has taken place by iterating over
the array and performing Flush+Reload, i.e., timing the memory access to each
array index. If RegCheck succeeds at leaking the target system register multiple
times, it flags it as vulnerable. We test our tool on Intel and AMD CPUs from
different generations. All tests use the latest microcode available in the Ubuntu
repositories. For further details on the specific microcode version used we refer
the reader to Table 2.

Affected Registers. The main insight from our analysis is that not all
privileged registers are affected in the same way by Meltdown-CPL-REG. This
is especially interesting because Intel’s list of CPUs affected by certain vulner-
abilities [25] (accessed May 2023) only lists CPUs where the rdmsr instruction
can be exploited by Meltdown-CPL-REG. However, our results in Table 2 show
that some CPUs that Intel flags as unaffected by the Meltdown-CPL-REG rdmsr
leakage can still be exploited to leak the contents of other system registers, such
as the performance counters using rdpmc. This, for example, is the case for the
Intel Celeron J4005 and the Intel Celeron N3350. The results in Table 2 show
that the instruction rdfsbase leaks on 8 out of 14 CPUs affected by Meltdown-



6 Weber et al.

Table 1: System registers and their access instructions tested by RegCheck.

Access Instruction Details

rdpmc Reads the specified Performance counter
rdtsc Reads the CPU timestamp counter
rdtscp Reads the CPU timestamp counter
mov CRx Loads the Control registers 0 - 8
mov DRx Loads the Debug registers 0 - 7
rdfsbase Retrieves segment selector of the FS segment base register
rdgsbase Retrieves segment selector of the GS segment base register
rdmsr Model Specific Registers
str Loads the segment selector of the Task register
sldt Loads the segment selector from the Local Descriptor Table register
sidt Loads the segment selector from the Interrupt Descriptor Table register
sgdt Loads the segment selector from the Global Descriptor Table register
smsw Loads the Machine status word

CPL-REG. The CPU timestamp counter accessed via rdtsc or rdtscp leaks
on 2 out of 14 affected CPUs. Performance counter leak on 3 of the affected
CPUs via rdpmc. A possible explanation for these different leakage rates could
be that for executing rdpmc, the CPU has to decode an argument of the instruc-
tion, i.e., the index of the access performance counter stored in RCX, while for
rdtsc, rdtscp, and rdfsbase all required information to fetch the requested
data is available, leading to a potentially simpler execution path. Nevertheless,
the CPUs where rdpmc is vulnerable do not show a superset of the vulnerable
instructions compared to the other systems. Even though these systems show
vulnerable rdpmc implementations, we could not verify further leakage.

Affected CPUs. Our second insight is that the fact that CPUs are vul-
nerable to Meltdown-US-L1 is not related to whether a CPU is also vulnerable
to Meltdown-CPL-REG, as shown in Table 2. In other words, we can leak from
system registers of CPUs that are affected by Meltdown-US-L1 and of CPUs not
affected by Meltdown-US-L1. This is especially surprising for recently released
CPUs, such as the Ryzen 9 6900HX. We observe that the tested Intel CPUs
from Alder Lake onward do not show leakage, while newer AMD CPUs do.

RegCheck Limitations. The current proof-of-concept implementation of
our tool RegCheck comes with different limitations. We do not check for the
leakage of swapgs as previous work has already analyzed this instruction and its
leakage potential [39]. We neither check the xgetbv instruction. The reason for
the latter is that to prevent unprivileged access to xgetbv, RegCheck needs to
set the OSXSAVE bit of CR4, which crashes the tested OS. A detailed list of the
analyzed system registers is shown in Table 1.

Table 2 flags rdtsc and rdtscp for certain instances with an “U” (short for
“unverified”). On these systems, we observed leakage from the system registers,
but could not verify that the leakage stems from the CPU timestamp counter.
The reason for this is that RegCheck uses a counting thread as a timer for an-
alyzing the instructions rdtsc and rdtscp. However, this timer does not work



Reviving Meltdown 3a 7

Table 2: CPUs tested by RegCheck for Meltdown-CPL-REG. “U” means we could
not verify if an actual timestamp is leaked. “ZF” means that only the value 0 is
returned transiently. Additionally, we annotate machines that are vulnerable to
the original Meltdown attack.

CPU µcode µarch Release MD-US Leaking Instructions

Intel Core i5-2520M 0x2f Sandy Bridge 2011 Yes rdtsc, rdtscp
Intel Core i5-3230M 0x21 Ivy Bridge 2013 Yes rdtsc, rdtscp, sldt
Intel Core i3-4160T 0x28 Haswell 2014 Yes rdfsbase, rdgsbase

Intel Core i3-5010U 0x2f Broadwell 2015 Yes rdfsbase, rdgsbase,
rdtsc (U), rdtscp (U)

Intel Atom x5-Z8350 0x411 Cherry Trail 2016 Yes rdpmc
Intel Celeron N3550 0x28 Apollo Lake 2016 No rdpmc
Intel Celeron J4005 0x3c Gemini Lake 2017 Yes rdpmc
Intel Core i3-7100T 0xf0 Kaby Lake 2017 Yes rdfsbase, rdgsbase
Intel Core i3-1005G1 0xb2 Ice Lake 2019 No –
Intel Core i7-10510U 0xf0 Comet Lake 2019 No rdfsbase, rdgsbase
Intel Core i7-1185G7 0xa4 Tiger Lake 2020 No –
Intel Celeron N4500 0x240000023 Jasper Lake 2021 No rdfsbase (ZF), rdgsbase (ZF), sldt (ZF)
Intel Core i9-12900K 0x22 Alder Lake 2021 No –
Intel Atom x6425E 0x17 Elkhart Lake 2021 No –
AMD GX-415GA 0x700010f Jaguar 2013 No –
AMD Ryzen 5 2500U 0x810100b Zen 2017 No rdfsbase, rdgsbase
AMD Ryzen 5 3550H 0x8108102 Zen+ 2019 No rdfsbase, rdgsbase
AMD Epyc 7252 0x8301055 Rome 2019 No rdfsbase, rdgsbase, str (ZF)
AMD Ryzen 9 6900HX 0xa404102 Zen 3+ 2022 No rdfsbase, rdgsbase

reliably on CPUs not supporting hyperthreading, as the counting and attacker
thread yield a more accurate timer when both threads execute on co-located hy-
perthreads. Table 2 also has system registers flagged with “ZF” (short for “zero
forwarding”). For these registers, an access always returns the value 0 instead of
the actual value. While such behavior intuitively sounds invulnerable, instruc-
tions forwarding zero values already led to microarchitectural attacks [60, 9].

4 Attack Primitive

In this section, we introduce our attack primitive CounterLeak. CounterLeak
exploits Meltdown-CPL-REG to leak performance-counter values using rdpmc
to infer side-channel information about program executions.

4.1 Threat Model

We assume an unprivileged attacker with native code execution. We further as-
sume bug-free victim software, e.g., the absence of memory corruption or logical
vulnerabilities. However, our attacker model relies on side-channel vulnerabili-
ties, i.e., we assume secret-dependent control or data flow in the victim appli-
cation. Even though our attacks are, in theory, mountable from inside virtual
machines, we did not explicitly test this, and attackers could only target vic-
tims inside their own virtual machine and not the hypervisor or other virtual
machines. While this weakens the attack surface, intra-VM attacks are still a re-
alistic scenario, e.g., in container-based environments. We target only Intel and



8 Weber et al.

Victim

Impact performance
counters

Attacker

Leak and encode
performance counters

Decode leaked values

CPU

Flush+Reload Array

Fig. 1: Meltdown-CPL-REG leaking system registers, such as performance coun-
ters.

AMD CPUs in this work. Note that Meltdown-CPL-REG is also exploitable on
Arm [6] but we consider further architectures out of scope for the experiments
conducted in this paper and only discuss them in Section 8.

4.2 CounterLeak

The CounterLeak attack primitive relies on Meltdown-CPL-REG. We use Melt-
down-CPL-REG to infer side-channel information about a victim program. Based
on our systematic analysis using RegCheck, and the publicly-available informa-
tion regarding Meltdown-CPL-REG by Intel [23], we build our attack primitive
on top of rdpmc. rdpmc provides a generic but privileged interface to perfor-
mance counters. Access to these performance counters leaks information about
the program execution that can be exploited for side-channel attacks [58, 8, 12].

Attack Overview. CounterLeak relies on Meltdown-CPL-REG to leak the
content of a performance counter. We assume that the system already has a per-
formance counter programmed. This is the case if the system uses performance
counters for attack detection, as suggested by previous work [20, 46, 28, 69].
For example, Cloudflare relies on performance counters to detect Spectre at-
tacks [62]. An attacker leaks the performance-counter values by encoding the
transiently-read return value of the rdpmc instruction into the microarchitecture
and recovers it using a side channel.

Implementation. In line with previous Meltdown-type attacks [36, 30, 56,
59, 61, 41, 10], we use the CPU cache to encode the transiently-leaked values and
Flush+Reload as the covert channel to make the values architecturally visible.
We support leakage of 1 to 4 bytes per rdpmc invocation by encoding each
byte into the cache state of an array consisting of 256 pages. The more data is
encoded into the microarchitecture, the better the resolution of the underlying
performance counter value. However, this also leads to a slower decoding phase,
as more Flush+Reload attacks are required. For leaking a single byte, at most
256 Flush+Reload attacks are necessary, while for leaking 4 bytes, at most 1024
Flush+Reload attacks are necessary. We evaluate this trade-off in Section 5.



Reviving Meltdown 3a 9

0 10 20 30 40 50 60 70 80 90

106

107

Experiment Iteration

T
im

e
R

eq
ui

re
d

[in
C

P
U

cy
cl

es
]

1 Byte 2 Bytes 3 Bytes 4 Bytes

Fig. 2: CounterLeak: CPU cycles needed to leak, i.e., access, encode, and decode,
n bytes of a performance counter by attacking rdpmc. The y-axis shows the CPU
cycles required for each repetition of the experiment (x-axis).

0 10 20 30 40 50 60 70 80 90 100

5,000

6,000

7,000

Experiment Iteration

T
im

e
R

eq
ui

re
d

[in
C

P
U

cy
cl

es
]

Fig. 3: CounterLeak: CPU cycles needed to transiently encode 4 bytes of the
CPU timestamp counter. The y-axis shows the CPU cycles required for each
repetition of the experiment (x-axis).

5 Evaluation

In this section, we evaluate the attack primitive CounterLeak which is based on
Meltdown-CPL-REG. All evaluations use our proof-of-concept implementation
on an Intel Celeron J4005 running Ubuntu 20.04 with Linux kernel 5.4.0.

The most important property in our evaluation is the temporal resolution of
CounterLeak, i.e., the time between two measurements. This property reflects
how fine-grained the information can be leaked by the exploit. We evaluate the
time it takes to leak n bytes of a system register. This measurement directly gives
us the temporal resolution of the attack. We observe that the implementation
leaks 1 byte of a system register in, on average, 348 257 cycles (n = 100). Figure 2
summarizes the time an attacker needs to leak the content of a performance
counter when leaking n bytes within one transient window. We emphasize that
this is a good indication of the theoretical performance of this attack, as an
attacker can likely mount exploits by only leaking parts of the system register. We
also require only partial leakage for our attacks discussed in Section 6. Note that
the temporal resolution mostly affects the execution time of an attack but does
not prevent an attack. An attacker can often compensate for a lower temporal
resolution by averaging over repeated measurements [35].

Still, whereas our complete attack primitive takes millions of CPU cycles for
one iteration (cf. Figure 2), the actual time spent encoding multiple bytes of a
system register is significantly shorter. While the time needed to leak n bytes
of a performance counter, i.e., the attack’s temporal resolution, is important
for repeated measurements, another critical metric is the time that an attacker



10 Weber et al.

needs to encode a value in the CPU cache. This metric is especially important
for event-driven attack scenario, i.e., whenever the attacker wants to take a
measurement after a certain event has happened. To evaluate the time it takes to
encode a value, we record the time needed to encode the value of the timestamp
register over 100 runs. Figure 3 shows the results. We observe that the average
time between the faulting access and the first subsequent attacker-controlled
instruction when encoding 4 bytes simultaneously is 6655 cycles. Whereas the
effective blindspot of our attack is higher, this time yields the offset between an
event triggering a measurement in the attacker code and the measurement itself.

6 Case Studies

In this section, we introduce 4 case studies demonstrating CounterLeak. We
demonstrate a Spectre proof-of-concept (PoC) (Section 6.1) and break KASLR
by monitoring the behavior of page walks (Section 6.2). To demonstrate that
our side channels re-enable mitigated attacks, we leak a 2048-bit RSA private
key from a square-and-multiply implementation found in MbedTLS using Coun-
terLeak (Section 6.3). Lastly, we show that we can break the branch-shadowing
mitigation proposed by Lee et al. [33] using CounterLeak (Section 6.4).

6.1 Spectre with CounterLeak

In this case study, we demonstrate a Spectre-type attack [30, 10] with our
CounterLeak primitive to leak otherwise inaccessible data. We build a Spectre-
PHT [30, 10] PoC with a performance counter as covert channel.

Target Performance Counter. We target a performance counter that
tracks speculative events [49], such as CYCLES_DIV_BUSY.ALL and assume that
it is either activated or can be enabled by the attacker. Note that depending
on the victim’s code, the discussed attack can also be mounted with a different
performance counter. The only requirement is that the accessed secret can be
encoded in branches that can be distinguished based on any performance counter.

Attack Overview. We attack a Spectre gadget of the form

1 if (i >= 0 && i < array_size) {
2 int tmp = (array[i] >> offset);
3 if ((tmp & 1)) x / y;
4 }

The attacker controls the variables i and offset. Note that even though the
inner if branch is only doing an operation that should not result in any state
change, it still affects related performance counters and hence suffices to enable
our attack. The attacker starts by mistraining the outer if branch such that its
subsequent execution is misspeculated to be taken. The simplest way to achieve
this is by in-place mistraining [10], i.e., executing the branch multiple times
with i being a valid offset for the array. As a baseline, the attacker leaks the
value of the performance counter CYCLES_DIV_BUSY.ALL using CounterLeak.



Reviving Meltdown 3a 11

0 50 100 150 200 250 300
300
400
500
600
700

Accessed Address (2MB Steps)

C
yc

le
s

fo
r

P
ag

e-
T
ab

le
W

al
k Position of __start_rodata

Fig. 4: The leaked values of DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M when
iterating over the potential locations where the Linux kernel could be mapped.
The page-table walk needs longer when the address is the actual start of the
kernel, i.e., the position of the kernel symbol __start_rodata.

This performance counter keeps track of the number of cycles the CPU’s divider
units are used. The attacker executes the victim function with an index i that is
outside the bounds of the array and corresponds to the targeted memory address.
Afterward, the attacker again leaks the performance counter of CYCLES_DIV_-
BUSY.ALL using CounterLeak and subtracts the previously leaked value. As the
divider is only used when the inner if branch is (speculatively) taken, the delta
is slightly higher if the transiently-accessed bit is ‘1’.

Results. We measure each bit 50 times and set a threshold on the median
to distinguish between ‘1’ and ‘0’ bits based on the value of the performance
counter. Our PoC achieves a leakage rate of 66.7 bit/s with an accuracy of 99.6%.
While not the fastest covert channel, we argue that it is still fast enough to pose
a threat when such an attack is mounted.

Comparison to Similar Attacks. Our attack only relies on a control
flow that is distinguishable by observing performance counters. Common covert
channels used in Spectre-type attacks require cache accesses to encode data from
transient execution [30, 32, 21, 40]. Finding such code paths that can be exploited
by Spectre-type attacks, also referred to as Spectre gadgets, is a challenging task.
While our attack is limited to a CPU vulnerable to CounterLeak and providing
a usable performance counter, it can use both traditional Spectre gadgets and
novel types of gadgets. Hence, with the combination of Spectre and CounterLeak,
the number of potential gadgets increases.

6.2 Breaking KASLR with CounterLeak

We demonstrate that unprivileged access to performance counters breaks Kernel
Space Address Layout Randomization (KASLR). KASLR randomizes the base
address of the operating system kernel upon booting. As precise knowledge of the
memory layout is a requirement for many attacks, KASLR adds an additional
barrier that attackers have to overcome for a successful kernel exploit. We show
that we can derandomize the location of the Linux kernel on an Intel Celeron
N3350 running Ubuntu 22.04 with Linux kernel 5.15.0 and thus bypass KASLR.

Target Performance Counter. We target a performance counter influ-
enced by page-table walks, such as DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M



12 Weber et al.

and assume that is already programmed or can be programmed by the attacker.
A scenario in which this is the case is if the system is protected using the ap-
proach of Wang et al. [63].

Attack Overview. For derandomizing the kernel location, we rely on the
property that non-present pages are not stored in the TLB [9]. Thus, a memory
load request to a non-present page always leads to a page-table walk, whereas
a memory load request to a present page leads to a TLB hit, resulting in no
page-table walk if the page was recently accessed. The attack iterates over each
potential location of the kernel and accesses it. The resulting fault caused by
the access is suppressed using speculative execution, TSX transactions, or fault
handling. For each memory access, the attacker leaks the performance counter
DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M, or an alternative one correlating
to the number of or the cycles spent for page-table walks, using CounterLeak.
Based on the leaked value, the attacker can observe whether a memory page is
present and was recently accessed. The first page of the kernel’s .rodata section
is frequently accessed. Thus, the first address showing an abnormal timing dif-
ference is the location of the kernel symbol __start_rodata. Note that a more
advanced version of this attack can also be used to actively monitor the access
to kernel memory pages, similar to the work of Schwarz et al. [53].

Results. Figure 4 shows the cycle difference iterating over the kernel address
space. The kernel location is easily distinguishable from non-present pages due to
the change in cycles spent for page table walks. We tested our KASLR break on
an Intel Celeron J4005 running Ubuntu 20.04 with Linux kernel 5.4.0 observing
a success rate of 98% (n=100) and a median execution time of 4.7 s.

6.3 Attacking RSA with CounterLeak

In this case study, we attack the RSA implementation based on the MbedTLS
version 1.3.10 running on an Intel Celeron J4005 with Ubuntu 20.04 and Linux
kernel 5.4.0. This MbedTLS version implements RSA by using a window-based
square-and-multiply algorithm. We configure the window size to 1. Previous
work [37] showed that all window sizes are vulnerable if window size 1 is vul-
nerable. While such square-and-multiply implementations are known to be vul-
nerable to side-channel attacks, we choose this target as it is a common target
for related attacks [54, 22, 14, 33, 66]. Hence, we ease comparison with other
side-channel attacks.

Target Performance Counter. We target the performance counter BR_-
INST_RETIRED.NEAR_TAKEN and assume that it is either already programmed or
can be programmed by the attacker. This performance counter keeps track of the
number of taken near-branch instructions. An example for a realistic scenario in
which this performance counter would be programmed is a system protected by
the rootkit detection of Singh et al. [57].

Attack Overview. The victim application consists of a branch only taken
when the currently-processed secret bit is ‘1’. Thus, the secret bit correlates
with the number of branches taken. The attacker gains oracle access to the sign-
ing routine of the application to sign arbitrary messages. We assume that the



Reviving Meltdown 3a 13

5,300
5,400
5,500
5,600

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 0 0

Secret Bits

O
bs

er
ve

d
N

um
be

r
of

B
ra

nc
he

s

Fig. 5: The leaked value of the performance counter BR_INST_RETIRED.NEAR_-
TAKEN and its correlation to the secret bits of the exponent.

attacker and victim are synchronized, i.e., the attacker either knows when the
victim processes each iteration of the exponentiation loop, or the attacker can in-
fluence this by, e.g., interrupting the victim. During the execution of the victim,
the attacker repeatedly leaks the value of the performance counter and, thereby,
the number of branches taken. The attacker leaks the performance counter once
per key bit. Afterward, the attacker stores the delta of two consecutive perfor-
mance counter leaks, i.e., the approximation of the victim’s taken branches for
the processing of a specific secret bit. The attacker repeats this procedure for the
decryption of 10 000 different messages, averaging out the noise of branches taken
by CounterLeak itself and the unrelated branches of the victim application.

Results. By averaging over 10 000 traces, we extract a clear indication of the
secret bits. Figure 5 visualizes the correlation between the number of branches
taken and the secret bits. Using a simple threshold, we recover 99.9% of the 2048-
bit RSA keys (n = 10) in around 15min. Compared to previous work, there are
both faster attacks requiring fewer encryptions [3, 37] and attacks requiring a
similar number of decryptions or more time to execute [68, 70]. We conclude
that CounterLeak yields a strong primitive for leaking secrets from, for example,
cryptographic implementations.

6.4 Breaking Zigzagger with CounterLeak

In this case study, we explore how CounterLeak breaks the Zigzagger branch-
shadowing mitigation. Branch-shadowing attacks exploit the shared branch his-
tory between processes, allowing attackers to reason about the direction of a
branch. For example, Lee et al. [33] demonstrate that a branch-shadowing attack
can leak confidential data from Intel SGX enclaves. To prevent branch-shadowing
attacks, Lee et al. [33] proposed a software mitigation called Zigzagger. Zigzagger
replaces a set of branches with a single indirect branch. Thus, the attacker can
only infer whether the branch was executed but cannot infer the branch direction
anymore. To compute the address of the indirect jump, additional conditional-
move instructions are used. In line with Gerlach et al. [15], we exploit the number
of retired instructions to break the Zigzagger mitigation. While Gerlach et al.
used an architectural interface to this information, we show that we can recover
the same information using CounterLeak. This information allows an attacker
again to distinguish the branches taken by the victim.



14 Weber et al.

Target Performance Counter. We target the INSTR_RETIRED perfor-
mance counter that is either already programmed or can be programmed by
the attacker. A realistic scenario for this would be if the defense approach of
Wang et al. [63] is in use on the system.

Attack Overview. The victim process contains secret-dependent branches
and is hardened against branch-shadowing attacks using Zigzagger [33]. The
attacker leaks the INSTR_RETIRED performance counter before and after the
Zigzagger-hardened victim executes. The delta between these measurements
yields the number of retired instructions. The attacker correlates this number
with a baseline measurement for all branches.

Results. For the case study, we use an Intel Celeron J4005 running Ubuntu
20.04 with Linux kernel 5.4.0. For each of the 3 different possible arguments of
the sample function, there is a unique number of retired instructions after the
Zigzagger modification was applied. Hence, by observing the number of retired
instructions, an attacker can directly infer the arguments. We observe a success
rate of 100% using 10 000 recorded measurements.

7 Countermeasures

In this section, we discuss countermeasures against CounterLeak and Meltdown-
CPL-REG. The fundamental problem is that an unprivileged attacker can tran-
siently access the metadata of an application in the form of performance coun-
ters. The exploited vulnerability is rooted deep inside the CPU. As the informa-
tion stem from a CPU register, no software is involved. Nevertheless, operating
systems can still defend against the impact of the attack whereas the victim
application itself can be hardened against the attack.

Firmware. Several CPUs received microcode updates to prevent the leakage
of system registers [1]. While CPU vendors do not disclose internals of these
updates, it is likely that a similar patch can also mitigate the remaining leakage.
Thus, the most efficient and effective mitigation is likely via microcode updates.

Kernel. CounterLeak fundamentally relies on performance counters that are
either already programmed or that can be programmed by an attacker-accessible
API. A common scenario for this are performance-counter-based detection ap-
proaches [71, 29, 46, 69, 11, 43, 42, 63, 64, 72]. As the absence of programmed or
programmable performance counter prevents CounterLeak, a carefully designed
system that does not use performance counters at all or only in the absense of
untrusted parties and code can also prevent the exploitation of CounterLeak.
As performance counters and their programming requires kernel privileges, the
kernel could, in theory, completely prevent the programming of performance
counters. However, this decision comes with the drawback that it would break
existing software like the performance-counter-based detection approaches or
monitoring utilities such as perf. In contrast, an operating system can prevent
attacks on KASLR without breaking existing software. Canella et al. [9] pro-
posed mapping dummy pages in the kernel such that all kernel addresses are
mapped. Consequently, an attacker cannot infer the real location of the kernel.



Reviving Meltdown 3a 15

Userspace Software. As CounterLeak is a side-channel attack, it is fun-
damentally limited to leaking data from an application with secret-dependent
branches or data-flow edges. However, an application can generally be imple-
mented without any secret-dependent accesses [26]. Applications implemented
in such a way are not susceptible to CounterLeak. Especially for cryptographic
algorithms, such implementations are state-of-the-art.

8 Discussion

In this section, we discuss related work. Furthermore, we show how the presented
attack primitive behaves on different operating systems and architectures. As
the building blocks of CounterLeak are OS-agnostic and also exist on other
architectures, we assume that similar attacks are also possible there.

8.1 Related Work

In 2018, Intel and Arm disclosed the vulnerability and assigned it CVE-2018-
3640 [24, 6]. While Intel released a security advisory and added a new category to
their list of CPUs affected by vulnerabilities [24, 25], Arm added a section about
the vulnerability in their Cache-Speculation Side-Channel whitepaper [6]. Our
work builds on this initial disclosure by analyzing the leakage of different system
registers on 19 CPUs with applied vendor mitigations. We further demonstrate
that it is still possible to exploit Meltdown-CPL-REG in different scenarios.

While we focus our work on Meltdown-CPL-REG, Canella et al. [10] analyzed
the landscape of transient-execution attacks with a broader focus. Furthermore,
they first introduced the split into Meltdown- and Spectre-type attacks. In con-
trast, our work focuses on the specific variant Meltdown-CPL-REG and analyzes
further details about it, including how widespread the issue itself is.

Attacks exploiting performance counters have been shown when the interface
was accessible to unprivileged users. In 2008, Uhsadel et al. [58] first exploited
performance counters to leak information about the CPU caches. With informa-
tion similar to a cache attack, they showed that the information can be exploited
to recover confidential values from a victim program. They also demonstrated
their attack on an OpenSSL AES implementation. Bhattacharya et al. [8] further
demonstrated that performance counters expose even more information than just
the cache state and thus allow reasoning about the branch-predictor state. Their
work discusses an exploit on a square-and-multiply implementation of RSA using
the Montgomery-ladder algorithm. Since then, the access to performance coun-
ters is privileged by default, preventing these attacks on modern systems [12].
Dixon et al. [12] further stresses the importance of disabling unprivileged access
to performance counters by showing that it allows derandomizing the kernel lo-
cation. Gerlach et al. [15] exploit the unprivileged access to performance counters
on RISC-V CPUs to break KASLR, leak the presence of inaccessible files, and
detect interrupts. Our work mainly differs from these previous ones by demon-
strating these and similar attacks on modern systems where performance-counter
access is restricted to privileged users.



16 Weber et al.

8.2 Other OS and Architectures

The underlying effects exploited in this paper are OS-agnostic. While this paper
targets Linux, we do not require any Linux-specific functionality. CounterLeak
interacts with the hardware directly without requiring any OS support. If any
application legitimately enables performance counters, they can be leaked.

CounterLeak requires systems that are vulnerable to Meltdown-CPL-REG.
While Meltdown-CPL-REG was also shown on Arm CPUs [6], we leave it for
future work to systematically analyze Arm CPUs for their Meltdown-CPL-REG
attack surface. Nevertheless, as all strict requirements for CounterLeak are also
given on Arm CPUs, we suspect that the issue also affects these systems.

9 Conclusion

In this paper, we analyzed the attack surface of Meltdown-CPL-REG. For this,
we developed an automated approach using RegCheck (open-sourced on GitHub)
to analyze 19 Intel and AMD CPUs based on different microarchitectures. In our
analysis, we observe that the privileged system registers that can be leaked by
Meltdown-CPL-REG differ from CPU to CPU. Furthermore, we observe that
the FS and GS segment base registers can be leaked even on recent AMD CPUs
(Zen 3+). We further show that our attack primitive CounterLeak can exploit
side-channel information by leaking the values of performance counters using
Meltdown-CPL-REG. We demonstrated CounterLeak in 4 different case stud-
ies. We showed that the primitive allows us to break KASLR by monitoring
the page-table walker and can break the Zigzagger branch-shadowing mitiga-
tion [33]. Additionally, we demonstrated the applicability of CounterLeak as a
flexible covert channel for Spectre attacks and leaked a 2048 bit RSA key from
a square-and-multiply implementation in MbedTLS, verifying that our primi-
tive reenables previously mitigated attacks. In conclusion, our work shows that
Meltdown-CPL-REG should not be underestimated and still poses a threat to
modern and fully patched systems.

Acknowledgment

We want to thank our anonymous reviewers for their comments and sugges-
tions. We also want to thank Leon Trampert and Niklas Flentje for providing
their help with running the experiments. This work was partly supported by
the Semiconductor Research Corporation (SRC) Hardware Security Program
(HWS).

References

1. “Rogue system register read,” 2018. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/advisory-guidance/rogue-system-register-read.html

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html


Reviving Meltdown 3a 17

2. O. Acıiçmez and W. Schindler, “A Vulnerability in RSA Implementations Due to
Instruction Cache Analysis and Its Demonstration on OpenSSL,” in CT-RSA 2008,
2008.

3. O. Acıiçmez, “Yet Another MicroArchitecutral Attack: Exploiting I-cache,” in AS-
PLOS, 2007.

4. O. Acıiçmez, J.-P. Seifert, and c. K. Koç, “Predicting secret keys via branch pre-
diction,” in CT-RSA, 2007.

5. A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. García, and N. Tuveri, “Port
Contention for Fun and Profit,” in S&P, 2018.

6. ARM, “Cache Speculation Side-channels,” 2020, version 2.5.
7. S. Bhattacharya, C.-m.-t.-n. Maurice, S. Bhasin, and D. Mukhopadhyay, “Tem-

plate Attack on Blinded Scalar Multiplication with Asynchronous perf-ioctl Calls,”
Cryptology ePrint Archive, Report 2017/968, 2017.

8. S. Bhattacharya and D. Mukhopadhyay, “Who watches the watchmen?: Utilizing
Performance Monitors for Compromising keys of RSA on Intel Platforms,” Cryp-
tology ePrint Archive, Report 2015/621, 2015.

9. C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss, “KASLR:
Break It, Fix It, Repeat,” in AsiaCCS, 2020.

10. C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens,
D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of Transient Execution
Attacks and Defenses,” in USENIX Security Symposium, 2019, extended classifi-
cation tree and PoCs at https://transient.fail/.

11. M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based side-
channel attacks using hardware performance counters,” ePrint 2015/1034, 2015.

12. L. Dixon, “Breaking KASLR with perf,” 2017. [Online]. Available: https:
//blog.lizzie.io/kaslr-and-perf.html

13. U. Frisk, “Windows 10 KASLR Recovery with TSX,” 2016. [Online]. Available:
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html

14. C. P. García, S. Ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya, and B. B. Brumley,
“Certified side channels,” in USENIX Security Symposium, 2020.

15. L. Gerlach, D. Weber, R. Zhang, and M. Schwarz, “A Security RISC: Microarchi-
tectural Attacks on Hardware RISC-V CPUs,” in S&P, 2023.

16. B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “ABSynthe: Automatic
Blackbox Side-channel Synthesis on Commodity Microarchitectures,” in NDSS,
2020.

17. D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard, “KASLR
is Dead: Long Live KASLR,” in ESSoS, 2017.

18. D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A Fast and
Stealthy Cache Attack,” in DIMVA, 2016.

19. D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches,” in USENIX Security Symposium, 2015.

20. N. Herath and A. Fogh, “These are Not Your Grand Daddys CPU Performance
Counters – CPU Hardware Performance Counters for Security,” in Black Hat Brief-
ings, 2015.

21. L. Hetterich and M. Schwarz, “Branch Different - Spectre Attacks on Apple Sili-
con,” in DIMVA, 2022.

22. T. Huo, X. Meng, W. Wang, C. Hao, P. Zhao, J. Zhai, and M. Li, “Bluethunder: A
2-level Directional Predictor Based Side-Channel Attack against SGX,” in CHES,
2020.

https://blog.lizzie.io/kaslr-and-perf.html
https://blog.lizzie.io/kaslr-and-perf.html
http://blog.frizk.net/2016/11/windows-10-kaslr-recovery-with-tsx.html


18 Weber et al.

23. Intel, “Instructions affected by rogue system register read,”
2018. [Online]. Available: https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-guidance/resources/
instructions-affected-rogue-system-register-read.html

24. ——, “Intel-SA-00115 Q2 2018 Speculative Execution Side Channel Update,” 2019.
[Online]. Available: https://www.intel.com/content/www/us/en/security-center/
advisory/intel-sa-00115.html

25. Intel, “Affected Processors: Transient Execution Attacks,” 2023. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/topic-technology/
software-security-guidance/processors-affected-consolidated-product-cpu-model.
html

26. Intel Corporation, “Guidelines for Mitigating Timing Side Channels Against Cryp-
tographic Implementations,” 2020. [Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-guidance/
secure-coding/mitigate-timing-side-channel-crypto-implementation.html

27. ——, “Refined Speculative Execution Terminology,” 2020. [On-
line]. Available: https://software.intel.com/security-software-guidance/insights/
refined-speculative-execution-terminology

28. G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: Stopping microarchitectural
attacks before execution,” ePrint 2016/1196, 2017.

29. ——, “Mascat: Preventing microarchitectural attacks before distribution,” in CO-
DASPY, 2018.

30. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting
Speculative Execution,” in S&P, 2019.

31. P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS,
and Other Systems,” in CRYPTO, 1996.

32. E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre Returns!
Speculation Attacks using the Return Stack Buffer,” in WOOT, 2018.

33. S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring Fine-grained
Control Flow Inside SGX Enclaves with Branch Shadowing,” in USENIX Security
Symposium, 2017.

34. M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “ARMageddon:
Cache Attacks on Mobile Devices,” in USENIX Security Symposium, 2016.

35. M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and D. Gruss,
“PLATYPUS: Software-based Power Side-Channel Attacks on x86,” in S&P, 2020.

36. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading
Kernel Memory from User Space,” in USENIX Security Symposium, 2018.

37. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache Side-Channel
Attacks are Practical,” in S&P, 2015.

38. X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography,” ACM CSUR, 2021.

39. A. Lutas and D. Lutas, “Bypassing KPTI Using the Speculative Behavior of the
SWAPGS Instruction,” in BlackHat Europe, 2019.

40. G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using Return
Stack Buffers,” in CCS, 2018.

41. D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, “Medusa: Microarchitectural
Data Leakage via Automated Attack Synthesis,” in USENIX Security Symposium,
2020.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/instructions-affected-rogue-system-register-read.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology


Reviving Meltdown 3a 19

42. M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and G. Gog-
niat, “Nights-watch: A cache-based side-channel intrusion detector using hardware
performance counters,” in HASP, 2018.

43. M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat, and
P. Benoit, “WHISPER: A Tool for Run-time Detection of Side-Channel Attacks,”
IEEE Access, 2020.

44. Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and their Implications,” in CCS,
2015.

45. R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the Ring (s): Side Chan-
nel Attacks on the CPU On-Chip Ring Interconnect Are Practical,” in USENIX
Security Symposium, 2021.

46. M. Payer, “HexPADS: a platform to detect “stealth” attacks,” in ESSoS, 2016.
47. C. Percival, “Cache Missing for Fun and Profit,” in BSDCan, 2005.
48. A. Purnal, F. Turan, and I. Verbauwhede, “Prime+Scope: Overcoming the Ob-

server Effect for High-Precision Cache Contention Attacks,” in CCS, 2021.
49. P. Qiu, Y. Lyu, H. Wang, D. Wang, C. Liu, Q. Gao, C. Wang, R. Sun, and G. Qu,

“Pmuspill: The counters in performance monitor unit that leak sgx-protected se-
crets,” arXiv:2207.11689, 2022.

50. H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against the machine clear: A
systematic analysis of machine clears and their implications for transient execution
attacks,” in USENIX Security, 2021.

51. H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “CrossTalk: Speculative
Data Leaks Across Cores Are Real,” in S&P, 2021.

52. T. Rokicki, C. Maurice, and M. Schwarz, “CPU Port Contention Without SMT,”
in ESORICS, 2022.

53. M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-Leak Forwarding: Leak-
ing Data on Meltdown-resistant CPUs,” arXiv:1905.05725, 2019.

54. M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and S. Mangard, “Malware Guard
Extension: Using SGX to Conceal Cache Attacks,” in DIMVA, 2017.

55. M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer, and S. Man-
gard, “KeyDrown: Eliminating Software-Based Keystroke Timing Side-Channel At-
tacks,” in NDSS, 2018.

56. M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss, “ZombieLoad: Cross-Privilege-Boundary Data Sampling,” in CCS, 2019.

57. B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the detection
of kernel-level rootkits using hardware performance counters,” in AsiaCCS, 2017.

58. L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware performance
counters,” in 5th Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC’08)., 2008.

59. J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution,” in USENIX
Security Symposium, 2018.

60. J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yuval,
B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection,” in S&P, 2020.

61. S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,
H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data Load,” in S&P, 2019.

62. K. Varda, “Dynamic process isolation: Research by cloudflare and tu graz,” 2021.
[Online]. Available: https://blog.cloudflare.com/spectre-research-with-tu-graz/

https://blog.cloudflare.com/spectre-research-with-tu-graz/


20 Weber et al.

63. H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, and H. Homayoun, “Hybrid-shield:
Accurate and efficient cross-layer countermeasure for run-time detection and mit-
igation of cache-based side-channel attacks,” in ICCAD, 2020.

64. H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, T. Mohsenin, and H. Homayoun,
“Comprehensive Evaluation of Machine Learning Countermeasures for Detecting
Microarchitectural Side-Channel Attacks,” in GLSVLSI, 2020.

65. O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking
the Virtual Memory Abstraction with Transient Out-of-Order Execution,” 2018.
[Online]. Available: https://foreshadowattack.eu/foreshadow-NG.pdf

66. Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differentially Analyzing Side-
channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves,” in CCS,
2017.

67. Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack,” in USENIX Security Symposium, 2014.

68. Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing Attack on
OpenSSL Constant Time RSA,” JCEN, 2017.

69. T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-channel attack
detection system in clouds,” in RAID, 2016.

70. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels
and Their Use to Extract Private Keys,” in CCS, 2012.

71. Y. Zhang and M. Reiter, “Düppel: retrofitting commodity operating systems to
mitigate cache side channels in the cloud,” in CCS, 2013.

72. Z. Zhang, X. Zhang, Q. Li, K. Sun, Y. Zhang, S. Liu, Y. Liu, and X. Li, “See through
Walls: Detecting Malware in SGX Enclaves with SGX-Bouncer,” in AsiaCCS, 2021.

https://foreshadowattack.eu/foreshadow-NG.pdf

	Reviving Meltdown 3a

