ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

susenix yusenix susenix
ASSOCIATION ASSOCIATION @ Hssociation

AVAILABLE REPRODUCED

(M)WALIT for It: Bridging the Gap between Microarchitectural and Architectural
Side Channels

Ruiyi Zhang Taehyun Kim Daniel Weber
CISPA Helmholtz Center Independent CISPA Helmholtz Center
for Information Security for Information Security

Michael Schwarz

CISPA Helmholtz Center for Information Security

Abstract

In the last years, there has been a rapid increase in microarchi-
tectural attacks, exploiting side effects of various parts of the
CPU. Most of them have in common that they rely on timing
differences, requiring an architectural high-resolution timer
to make microarchitectural states visible to an attacker.

In this paper, we present a new primitive that converts mi-
croarchitectural states into architectural states without relying
on time measurements. We exploit the unprivileged idle-loop
optimization instructions umonitor and umwait introduced
with the new Intel microarchitectures (Tremont and Alder
Lake). Although not documented, these instructions provide
architectural feedback about the transient usage of a specified
memory region. In three case studies, we show the versatility
of our primitive. First, with Spectral, we present a way of en-
abling transient-execution attacks to leak bits architecturally
with up to 200 kbit/s without requiring any architectural timer.
Second, we show traditional side-channel attacks without re-
lying on an architectural timer. Finally, we demonstrate that
when augmented with a coarse-grained timer, we can also
mount interrupt-timing attacks, allowing us to, e.g., detect
which website a user opens. Our case studies highlight that
the boundary between architecture and microarchitecture be-
comes more and more blurry, leading to new attack variants
and complicating effective countermeasures.

1 Introduction

Microarchitectural attacks are a serious threat to the security
of modern systems. These attacks exploit properties of the
implementation of CPUs. Attacks leaking metadata have been
shown on data and instruction caches [21], but also on other
microarchitectural elements [1,9,18,21,49,71,98]. Transient-
execution attacks, such as Spectre [45] or Meltdown [53],
even leak data instead of only metadata.

The majority of these attacks use subtle timing differences
to infer the state of a microarchitectural element [98]. Hence,
they require an architectural high-resolution timer to measure

these differences. A native-code attacker typically has access
to such a high-resolution timer, e.g., the CPU’s time stamp
counter. However, on ARM, timers are often privileged [51],
and on AMD, the resolution is limited on many CPUs [52].
Hypervisors and operating systems can also trap (and possibly
emulate) this instruction [26,42,57,95]. As the time-stamp
counter is also used in malware, detection approaches can
rely on that to detect malicious software [67].

Previous work showed that even in the absence of high-
resolution timers, timers can be built by an attacker [22,81].
Such timers, implemented as counting threads, require con-
current, uninterrupted execution, and shared memory. Still,
while they have been used for microarchitectural attacks [17,
22,45,52,77], they are typically less accurate and noisier than
native high-resolution timers [17,94].

A second property many side channels have in common
is the blind spot. If the event to observe happens between
a measurement and the end of a potential reset sequence,
it cannot be detected [92]. The length of these blind spots
is often in the range of multiple hundred to thousand CPU
cycles [72]. Hence, we ask the following research questions:

Can we vreplace timing measurements with an
architecturally-defined interface to leak side-channel
information? Can such an interface also reduce or eliminate
the blind spot of existing side channels?

In this paper, we introduce a novel primitive to enable
side-channel attacks without architectural timers. With the
Tremont and subsequently also the Alder Lake microarchi-
tecture, Intel introduced a new unprivileged instruction pair
for optimizing idle loops: umonitor and umwait [35]. These
instructions let the CPU enter a sleep state from which it
wakes up again if a pre-defined memory range is modified.
They are similar to AMD’s monitorx and mwaitx instruc-
tions as well as the privileged variants monitor and mwait.
We exploit undocumented properties of these instructions to
transform microarchitectural states into architectural states
without measuring time explicitly. Specifically, we show that
these instructions can be triggered by memory writes, and also
via other instructions, such as cache-maintenance instructions

or transient writes. Moreover, although the feature set of the
unprivileged umwait and the privileged mwait is documented
to be different, we show that they behave nearly identical, by
reverse engineering an undocumented timeout function of the
mwalt instruction.

Based on our reverse engineering and analysis of these in-
structions, we demonstrate cross-core covert channel without
an architectural timer. In contrast to previous work [16,18], we
do not rely on disabled ISA extensions [60] or time windows
for the transmission. We only use the architectural output of
the instructions combined with a self-clocking encoding.

While previous work showed that Spectre attacks can be
mounted with coarse-grained or remote timers [31, 83, 87],
they all require an architecturally accessible timer. Based on
our covert channel, we demonstrate that Spectre attacks [45]
can be mounted on Intel’s newest CPUs without requiring any
timing measurement. We refer to Spectre attacks based on our
conversion method from microarchitectural to architectural
states as Spectral (Spectre with architectural leakage) attacks.
Furthermore, we show that Spectre Attacks are theoretically
also possible with Prime+Abort [16]. However, Prime+Abort
does no longer work on recent Intel CPUs, and we discuss
several advantages of Spectral over Prime+Abort, such as
its robustness in high-noise environments and its accuracy in
regards to false-positive measurements. We show that Spectral
reliably leaks data with a simple bit-wise Spectre gadget [10,
31,55,82] and without an architectural timer. Our unoptimized
proof-of-concept implementation leaks up to 200 kbit/s in
a lab environment, and on average 56.5 kbit/s on a default
Linux installation. In general, this technique applies to all
transient-execution attacks, providing a deterministic and fast
primitive to convert microarchitectural to architectural states.

To show the versatility of our techniques, we demonstrate a
primitive to distinguish cache hits from cache misses without
an architectural timer. By automatically calibrating a padding
sequence to the internal timeout of the mwait instruction,
we build an architectural classifier that distinguishes short-
running from long-running events. With that, we can, e.g.,
detect if memory loads hit or miss the cache. To demonstrate
the stability of this attack, we use the well-known AES T-
table attack on OpenSSL 1.0.1e, a de-facto benchmark for
such attacks [21,23,51,72]. We show that in contrast to other
cache attacks [16,70,72], our primitive is extremely resistant
to false positives caused by memory pressure on the system.

Finally, we show that the susceptibility to interrupts of the
mwait instructions can also be exploited. We show that while
ARM does not have a full-fledged mwait instruction, the wfi
instruction shares this property with the mwait instruction, i.e.,
it can also observe interrupts. This property allows monitoring
interrupts to, e.g., infer inter-keystroke timings [15,50,79]. In
contrast to previous work, we do not require OS interfaces [15,
101] or architecturally accessible high-resolution timers [79].
Moreover, as our primitive immediately reports an interrupt,
it reduces the blind spot, providing a high resolution. As a

case study, we use interrupt monitoring for network interrupts,
detecting opened websites.

Our results show that the line between architecture and
microarchitecture becomes fuzzier with the introduction of
new ISA extensions. Instructions such as the unprivileged
umonitor and umwait can be abused to bridge the gap be-
tween microarchitectural and architectural states. This prop-
erty is also dangerous for defenses. Assumptions that certain
attacks, such as Spectre attacks, require an architectural timer
no longer hold [59]. Moreover, we show that our primitives
are not affected by typical system noise, and cannot be de-
tected using any known dynamic detection method. We stress
that cloud providers should be aware of the risks posed by new
ISA extensions before deploying them in their environments.

To summarize, we make the following contributions:

1. We reverse engineer undocumented properties of the
monitor- and mwait-instruction family that help convert
microarchitectural into architectural states.

2. With Spectral, we show that fast Spectre attacks are possi-
ble without any architectural timing primitive, leaking up
to 200 kbit/s.

3. We introduce a threshold measurement primitive to dis-
tinguish short-running from long-running events, e.g., to
distinguish cache hits from misses without an architec-
turally accessible timer.

4. We show a precise interrupt-monitoring attack, e.g., to
detect the website a victim opens.

QOutline. Section 2 provides background. Section 3 presents
the reverse engineering of the memory-monitoring functions
on Intel and AMD. Section 4 introduces the attack primitives
built on top of the undocumented features of these instructions.
Section 5 shows a timing-less covert channel, and Section
demonstrates three case studies using our attack primitives.
Section 7 proposes countermeasures. Section & discusses
limitations and future work. Section 9 concludes.

Responsible Disclosure. We responsibly disclosed our
findings to Intel, AMD, and ARM. All vendors acknowledged
our side-channel attacks.

2 Background

2.1 Caches and Cache Attacks

For modern CPUs, memory accesses are the bottleneck when
executing instructions. Hence, to reduce the latency when ac-
cessing recently used data, a CPU stores a copy of this data in
a small but fast buffer, a so-called cache. Cache attacks exploit
the different execution times for accessing data stored in the
cache or main memory. There are multiple variants of cache at-
tacks [76] but the best-known attacks are Flush+Reload [100]
and Prime+Probe [70]. Flush+Reload [100] relies on shared
memory between the attacker and the victim, as well as on the
cache-maintenance instruction c1flush. Prime+Probe [70]
does not require shared memory and observes eviction of at-

tacker data caused by cache activity of the victim. Flush+
Reload and Prime+Probe have been used for attacks on
cryptographic algorithms [4, 8,20, 28,37,43,51,70,99]. A
well-known attack is the cache attack on the AES T-table
implementation [39], which is often used to compare the
efficiency of attacks [16, 23, 72, 93] or defenses [19, 24].
In addition to attacks on cryptographic implementations,
Flush+Reload has also been used to spy on user behav-
ior [25,51,96, 103] and as the covert channel in transient-
execution attacks [11,45,53,80,90,91,94].

Except for Prime+Abort [16], all cache attacks have in com-
mon that they require a method to measure time differences
with a high resolution. However, Prime+Abort relies on Intel
TSX, which only existed on selected Intel CPUs from the 6th
to the 9th generation, and is now disabled on all currently
available Intel CPUs with the newest microcode updates [60].
Thus, Prime+Abort does not apply to modern CPUs anymore.

2.2 Transient Execution Attacks

On x86, complex instructions are split into smaller micro-
operations (uop), allowing superscalar optimizations. Instruc-
tions are decoded and committed to the architectural state
in program order, with pops not necessarily executed in this
order. If the CPU encounters a conditional branch, the CPU re-
duces pipeline stalls by speculatively executing the predicted
code path. On a correct prediction, the speculatively-executed
uops are committed to the architectural state, otherwise, the
CPU discards the result of the yops. While non-committed
instructions do not modify the architectural state, they can
still affect the microarchitectural state, e.g., the cache. Such
instructions are called transient instructions [12,45,53].
Transient-execution attacks are a new class of microar-
chitectural attacks relying on transient instructions to leak
inaccessible data [10-12, 45,47, 53, 65, 80, 82, 90, 91, 94].
These attacks are classified into two classes, Meltdown-
type [53] and Spectre-type [45] attacks [12]. Meltdown-type
attacks exploit that some CPUs defer permission checks
for memory accesses during transient execution. This de-
ferred permission check allows transient instructions to ac-
cess normally inaccessible data from different security do-
mains [11, 53, 62, 74, 80, 86, 90, 91, 94]. Spectre-type at-
tacks [10,32,45,47,56,65,74] exploit transient instructions
resulting from misspeculation. For both classes, the accessed
data is encoded into a microarchitectural element and con-
verted to the architectural domain using a microarchitectural
covert channel, e.g., Flush+Reload, AVX2 wake-up times [82],
port contention [10], or the TLB [49,55]. While new CPUs
mitigate Meltdown-type attacks in silicon, Spectre-type at-
tacks are inherent to speculative execution [45,53].
Spectre-BTB [45] can be mitigated automatically via soft-
ware workarounds [89]. Mitigating Spectre-PHT [45] is not
possible in an automated way without non-negligible perfor-
mance penalties [41]. Manual mitigation requires developers

to mitigate individual code sequences by inserting memory
barriers [44] or using special hardened indexing functions
as used in the Linux kernel. Despite automated mitigation
attempts in specific environments [64], recent works showed
that Spectre-PHT is still a threat by presenting Spectre-PHT
attacks in JavaScript [83, 87] and even in the hardened Linux
kernel [41]. Spectre-PHT [45] exploits the misprediction of
conditional direct branches. If such a branch is used for an
array-size check, the CPU can be tricked to speculatively exe-
cute an array access with an out-of-bounds value. The out-of-
bounds value is encoded using a so-called Spectre gadget [45],
and then transmitted to the architectural state using a covert
channel, often Flush+Reload. In addition to Flush+Reload,
different microarchitectural covert channels have also been
used for Spectre-PHT attacks [10,49,52,82,88]. However, all
these covert channels have in common that they require an
architectural timer [83].

2.3 Idle-Loop Optimization

In addition to performance, power efficiency plays a vital role
in modern CPUs. Reducing the consumed power leads to less
heat and longer battery runtimes for mobile devices. As idle
periods with low or nearly no computational workload are
very common in systems, the CPU supports multiple perfor-
mance and idle states. In these states, the CPU turns off or
throttles unused functions to save power. A typical scenario
for idle times is when no application is scheduled on a CPU
core. In this scenario, the operating system (OS) spends time
in an idle loop that puts the CPU to sleep until an interrupt
arrives. The monitor and mwait instructions optimize such
idle loops. Instead of requiring an interrupt to wake up, these
instructions put the CPU into an optimized power state from
which it wakes up when a specified memory location is mod-
ified [35]. For this, monitor arms the monitoring hardware
with a virtual address to be monitored, and mwait hints the
CPU to enter such an optimized state. In addition to this priv-
ileged instruction pair, there is an AMD-specific unprivileged
instruction pair monitorx and mwaitx that can also be used
in user-space applications [2]. These instructions additionally
provide a timeout after which the CPU wakes up, regardless
of whether there was an interrupt or a write to the monitored
address. Intel also introduced an unprivileged version with
the umonitor and umwait instructions. In the remainder of
the paper, we refer to all of these instructions as monitor and
mwait if we do not specify a specific variant.

3 Memory Monitoring

In this section, we analyze the wake-up behavior of the mwait
instructions on Intel and AMD CPUs, the umwait instruction
on Intel CPUs, and mwaitx on AMD CPUs. We show undocu-
mented behavior when using these instructions in combination
with transient execution and cache-maintenance functions.

Table 1: Analysis of which wake-up triggers, i.e., actions on
the monitored cache line, wake up which mwait variant.

Access Trigger UMONITOR MONITORX MONITOR
Write v v v
Flush X v v
architectural clzero N/A 4 v
clwb N/A 1 i
prefetchw v T T
transient Speculative write v 1 1
seer Write after exception v 1 1

T only on Zen 3, not on Zen or Zen+.

Setup. We test on different microarchitectures, namely
Jasper Lake (Intel Celeron N4500; Tremont-based; microcode
0x24000014), Alder Lake (Intel Core i9-12900K; microcode
0xf), Whiskey Lake (Intel Core i17-8565U; microcode Oxec),
Comet Lake (Intel Core i7-10710U; microcode 0xe8), Zen
(AMD Ryzen 5 2500U; microcode 0x810100b), Zen+ (AMD
Ryzen 5 3550H; microcode 0x8108102), and Zen 3 (AMD
Ryzen 9 5900HX; microcode 0xa50000c). All systems are
running Ubuntu 20.04 LTS (Linux kernel 5.4).

3.1 Wake-up Trigger

When entering an optimized power state using mwait, the offi-
cial documentation states that the CPU wakes up either when
a store matches the address range specified with monitor, an
interrupt occurred, or a potential timeout is reached [2, 34].
Except for umwait, there is no indication for the wake-up rea-
son. However, in addition to the documented wake-up events,
our experiments show that not only writing directly to the
monitored virtual address trigger the wake-up.

To evaluate if modifications to aliased addresses wake up
the CPU as well, we map two different virtual addresses to
the same physical address. We do not observe any difference
between writing to these aliased addresses and writing to the
monitored address. Moreover, a write to any offset within
the monitored cache line leads to a wakeup, whereas writes
outside the cache line do not trigger a wakeup. This indicates
that the implementation is based on the physical cache line
and not by matching the virtual address. This behavior is the
same for all mwait variants on both Intel and AMD CPUs.

Second, cache-maintenance functions, such as flushes, also
wake up the mwait instruction both on Intel and AMD.
However, this is only the case for mwait and mwaitx,
while the umwait instruction does not wake up from a
flush of the monitored address range. While normal soft-
ware prefetches (prefetchnt*, prefetcht*) do not cause
a wakeup, prefetches for write (prefetchw) also cause a
wakeup on Intel CPUs and AMD’s Zen 3 microarchitecture.
This is in line with concurrent work showing that prefetchw
changes the cache-coherence state of the target address to
modified [29]. For completeness, we also show that cache-
maintenance functions with implicit writes, i.e., c1zero and
clwb, also wake up the mwait instructions on AMD. While
clwb only triggers a wakeup on Zen 3, clzero also triggers

Table 2: Wake-up triggers on different memory types.

Memory Type UMONITOR MONITORX MONITOR

Write-back v/ v/ v/
Write-through v X X
Uncachable v/ X X
Invalid + + +

=+ CPU does not enter a sleep state.

a wakeup on Zen and Zen+. Transient writes wake up the
umwait instruction. For the mwaitx and mwait instructions,
transient writes only act as wake-up triggers on AMD Zen 3.

Based on these observations, we hypothesize that the
monitor and mwait instructions are implemented using the
cache-coherence protocol. If the cache-coherence state for a
cache line changes to the modified state, the mwait instruction
wakes up, independent of the actual modification of the cache
line. We also verified this by observing that non-architectural
writes to read-only pages behave the same, which is in line
with the prefetch observations by Guo et al. [29]. Table
summarizes the results for different triggers.

3.2 Memory Types

As suggested by the description of the monitor instruction
in the Intel and AMD manuals [2, 35], the monitored ad-
dress range should be write-back memory. Monitoring a non-
write-back memory is not guaranteed to trigger a wakeup.
Our experiments confirm that writes to a write-back mem-
ory range wake up the CPU from the power-optimized state
for the umwait, mwaitx, and mwait instructions. To evaluate
the behavior with undocumented memory types, we rely on
PTEditor [78] to manipulate the page-table bits of the tar-
get address. Table 2 summarizes the overall wake-up-trigger
results for different memory types. We verify that writing
to uncachable or write-through memory does not trigger the
mwaitx and mwait instructions to wake up on any microar-
chitectures. However, if the umwait instruction monitors such
a memory type, a modification still triggers the wakeup. We
confirm that the CPU does not enter a power-optimized state
if the monitor instruction suffers an exception, e.g., a page
fault. Moreover, speculative execution of monitor does not
arm the monitoring hardware either.

3.3 Timeouts

On the Tremont microarchitecture, the umwait instruction
features two timeouts. First, the instruction takes a user-
provided timestamp at which the instruction continues if
no memory write was observed until that point. Second,
there is a maximum waiting time that the OS can define.
The umwait instruction uses the 32-bit value stored in the
IA32_UMWAIT_CONTROL MSR (0xel), as the maximum num-
ber of cycles it waits before it continues [34]. Hence, on

a CPU with 2 GHz, the maximum waiting time is approxi-
mately 2 s, or unlimited if the value is zero. On Linux (kernel
5.11), the OS timeout of umwait is set to 100 000 cycles while
there is no maximum time set on Windows 10 (version 20H2)
by default.’ If a user-defined timestamp and an OS-defined
maximum waiting time are provided, the CPU always uses
the timeout that is reached first. Intel also supports an un-
documented timed mwait feature [34]. We experimentally
confirmed that the feature can be enabled by setting bit 31 in
MSR (0xe2) [46]. We further reverse engineered the feature
and found that bit 1 of the ECX register of the mwait instruc-
tion indicates that the timeout feature is used. The maximum
waiting time is an implicit 64-bit timestamp-counter value
stored in the EDX: EBX register pair. The timed mwait wakes
up when the timestamp counter reaches or exceeds the speci-
fied 64-bit value. We verified that this undocumented timeout
feature works since the Skylake microarchitecture.

On AMD, the mwaitx instruction features a user-defined
timeout. This feature is enabled by setting bit 1 of the ECX
register when executing mwaitx. In contrast to the umwait
and mwait instruction, where the timeout value is set as an
absolute 64-bit value, mwaitx uses a 32-bit relative timeout
in CPU cycles via the EBX register.

3.4 Wake-up Latency

We also analyzed the wake-up latency of umwait, mwaitx,
and the undocumented timed-mwait instructions with their
timeout features. We observed that the number of cycles spent
waiting after the timeout differs slightly across these three
instructions. On Jasper Lake, umwait wakes up about 6 to 32
cycles after the timestamp counter exceeds the timer’s value
provided by the user. When the timeout is triggered by the OS-
defined maximum waiting time, umwait wakes up about 32
cycles after the OS-defined time has elapsed, which is in line
with the user-defined timeout feature. Note that such a short
wake-up latency can provide a fast synchronization primitive.
Compared to the umwait instruction, the timed mwait and
mwaitx instructions have a higher wake-up latency. Specif-
ically, when the provided 64-bit timestamp has expired, the
mwait instruction wakes up after about 696 cycles on an Intel
Core i7-8565U (Whiskey Lake). The latency of the mwaitx
instruction is about 932 cycles on AMD Ryzen 5 2500U (Zen)
and about 1654 cycles on AMD Ryzen 9 5900HX (Zen 3).

3.5 Virtualization

To analyze the behavior of the umwait instructions, we per-
formed the wake-up trigger experiments (cf. Section 3.1)
inside virtual machines (VMs). We used the newest version of
QEMU (6.1.0) with KVM that supports the umwait instruc-
tion. KVM does not trap the umonitor instruction. Hence, it
also works inside VMs. The wake-up behavior is the same as

IThe value of the MSR is set to 0 on Windows.

Core #X Core #Y

Transient E No Transient E No
write H write write H write
; UMWAIT
Retired T
1 3 H
} g Sleeq state
EA '
] : g f
3 o . !
= Transient Execution - 0
g - |
5 [=
| i
= store — wakeup
v |leadsto L [E—
1 H
H | timeout
i
EFLAGS.CF: 0 H 1

Figure 1: TWM: Transient stores wake up the umwait instruc-
tion. On such a wakeup, the carry flag (CF) is ‘0’, while it is
‘1’ if the instruction wakes up due to a timeout. This property
provides an architectural information about a transient event.

when executed natively (cf. Table 1). In contrast, monitorx
inside a VM on AMD behaves like a nop, as it is trapped by
current versions of KVM and emulated as a nop.

4 Attack Primitives

In this section, we describe the attack primitives that we use
for our case studies. First, we show how to use the monitor
and mwait instructions to directly convert microarchitectural
state changes into architectural state changes (Section 4.1).
Second, we show how to use the precise timeout mechanism
of the umwait instruction to measure timing differences with-
out access to an architectural timer (Section 4.2).

4.1 TWM: Architectural Monitoring of Tran-
sient Writes

Our analysis of the monitor and mwait instruction family
(cf. Section 3) shows that, although not documented, transient
writes wake up the umwait instruction. Moreover, the umwait
instruction provides the architectural information whether it
woke up due to the OS timeout, or due to some trigger, e.g.,
modification of the monitored address range. By combining
these two properties, we build a primitive that reports a mi-
croarchitectural event (transient write) via an architectural
interface (carry flag). We refer to this primitive as TWM
(transient-write monitor).

Figure | illustrates the basic idea of TWM. The setup con-
sists of two CPU cores, Core #X and Core #Y, and a shared
cache line. It does not matter whether the two cores are physi-
cal cores or logical cores. Core #Y first arms the monitoring
hardware by executing the umonitor instruction with the
cache line as the target. This is the initial step, generally also
referred to as prime or reset step in other side-channel at-
tacks [72,98]. With the armed monitoring hardware, Core

P+P h

Detection Rate [%]

L L Lol L L L Lol
103 10* 10°
Victim events per second

Figure 2: Detection rate for asynchronous events using TWM
and compared paradigms. The chosen window size for Flush+
Reload and the TSX-based primitive allows for a blind spot
rate of less than 5 %.

#Y can now enter the probe or measure loop. By executing
the umwait instruction, the core enters a light-weight sleep
mode, typically CO.1 or C0.2 [34]. There are now two cases
to distinguish: Core #X transiently writing or not writing to
the monitored cache line. If Core #X transiently writes to the
monitored shared cache line, Core #Y wakes up and contin-
ues execution with a cleared carry flag (CF = 0). If Core #X
does not write to the monitored shared cache line, Core #Y
sleeps until the maximum sleep time defined by the OS is
reached (cf. Section 3.3). In this case, the carry flag is set (CF
= 1) when Core #Y wakes up. Hence, with the carry flag, an
attacker has the architectural information whether there was
a microarchitectural event, i.e., a transient write.

Evaluation. To comprehensively evaluate TWM, we con-
struct a standard benchmark for detecting fully asynchronous
events with TWM and other conventional side-channel attacks
for reference [16, 70, 72, 100]. The victim event is either a
transient access or a transient write to a targeted cache line
pinned to a different physical core than the attacker. Each
asynchronous event is triggered after the process relinquishes
the CPU and waits for a delay loop. The iteration number
is randomly selected below a decreasing threshold. To simu-
late the frequency of the asynchronous events, we reduce the
threshold per 1000 s. As no microarchitecture supports both
TSX and umonitor, we run the experiments on an Intel Jasper
Lake (Celeron N4500; microcode 0x24000014) that supports
umonitor and an Intel Skylake (Xeon E3-1505M; microcode
0xd6) that supports TSX. While Prime+Scope cannot find an
efficient prime pattern on our Jasper Lake machine, we test
TWM and Flush+Reload on Jasper Lake and test the TSX-
based primitive, Prime+Probe, and Prime+Scope on Skylake.
Figure 2 shows TWM has a perfect recall of the victim event
at frequencies from thousands to a million events per second.
We identify that TWM has three additional advantages over
conventional side-channel attacks.

First, TWM never misses an event during the monitoring
phase, i.e., while umwait waits. Once TWM detects an event
or the timeout of umwait is reached, umwait wakes up and the
attacker re-arms address monitoring hardware. This is similar
to the attacker waiting for an abort in TSX-based attacks. In

Table 3: Comparison of error rate and blind spot for detecting
asynchronous events using TWM and compared paradigms.

Paradigm WL Event Blind Spot FP(/s) FP under stress(/s)
Flush+Reload =~ X Transient Access 448 cycles 0 0

TWM v Transient Write 175 cycles 263 297
TSX-based v Transient Write 108 cycles 1609 63063
Flush+Reload X Transient Access 635 cycles 0 0
Prime+Probe v Transient Access 4702 cycles 736 173790
Prime+Scope v/ Transient Access 3100 cycles 618 51682

WL denotes windowless.

contrast, Flush+Reload constantly resets the observed state
and measures it again after waiting for a period. Suppose
multiple events occur during the waiting and measurement
periods. In that case, only one event can be detected, and the
rest are missed. Attacks such as Prime+Probe and Prime+
Scope can observe the cache state continuously and only reset
the state after detecting an event. While Prime+Scope offers a
rapid measurement for the eviction of a certain cache line, the
probe step of Prime+Probe needs to access the entire eviction
set, which costs hundreds to thousands of cycles. This effect
explains why the performance of Prime+Probe declines at
high frequencies as more events fall in the same probe period.
Second, the blind spot of TWM is relatively low compared
to conventional side-channel attacks. Like all prior attacks,
TWM also has a reset period to re-monitor the target address,
namely the time between a timeout of umwait and its sub-
sequent execution. In this reset period (blind spot), the side
channel cannot detect the monitored event and thus misses it.
Our experiment shows the average blind spot is 175 cycles on
Jasper Lake, including a wake-up latency of umwait and the
time of re-arming the monitoring hardware. With a monitor-
ing period of 100000 cycles, the blind spot is only 0.175 %
of one iteration. This is significantly less than for other cache
attacks [72]. For example, the blind spot for Flush+Reload
on Jasper Lake is around 400 to 500 cycles, and the average
blind spot for TSX-based attack is 108 cycles on our Skylake
microarchitectures. Note that the blind spot rate of TSX-based
attack could be decreased by waiting more time on each trans-
action, which in turn introduces more false positives. Further-
more, Prime+Scope behaves similarly to Prime+Probe but has
more tension between the prime state and the victim event in
a fully asynchronous attack. Specifically, accessing the cache
line of the victim could lead to a failed prime stage, resulting
in a higher number of missing events. To overcome this issue,
the attacker has to repeat the prime stage in a chosen period.
Third, we demonstrate that TWM is low-noise. The umwait
instruction does not miss any writes, regardless of whether
the writes are architectural writes or transient writes. Hence,
we do not observe any false negatives, i.e., it never happens
that a write is missed. We only observe false positives if an in-
terrupt occurs while unwait is sleeping. However, interrupts
are a common source of errors for traditional timing-based

’In our instance, the attacker repeats the prime stage after every five
victim events for Prime+Scope.

Core #X Core #Y

Fast E Slow Fast E Slow
event ¥ | eventS event ¥ | eventS
UMWAIT
Padding (é.g., NOPs) T
: Sleepj state
3 :
2 fast slow H
= '
= H
Sl | store wakeup E
.. [E—
U store - | timeout
P
H EFLAGS.CF: 0 H 1

Figure 3: TLT: A padding is used to ensure that a store to the
monitored cache line executes before or after the OS timeout
of umwait, depending on the runtime of the event between
padding and store. Calibrating the length of the padding once
allows distinguishing fast and slow events, such as cache hits
and misses, without an explicit timer.

side channels [58] and TSX-based side channels [16] as well.
Table 3 shows the number of false positives (FP) by changing
the victim to an unmonitored cache line. The FP of each primi-
tive is the average over 100 runs of different event frequencies
from thousands to one million per second. To evaluate the
noise resistance of TWM, we run the stress utility in paral-
lel to create pressure on the CPU and the memory subsystem.
Even with stress running on all cores, FP are below 300
per second. In comparison, the FP of TSX-based primitive
increases from 1609 to 63 063 per second. This is not surpris-
ing, as TSX transactions abort if the memory used inside the
transaction is evicted from the cache [24].

4.2 TLT: Timer-less Timing Measurement

In addition to monitoring transient writes, we can also exploit
the timeout function itself to distinguish the runtime of events
without an explicit timer. We refer to this primitive as TLT
(timing-less timer). Our attack primitive aims to distinguish
a long-running from a short-running event. This is a typical
scenario for side-channel attacks, where the leakage often
manifests itself in a timing difference. For example, cache
attacks distinguish fast cache hits from slow cache misses.
As in TWM, we again rely on the architectural information
provided by the umwait instruction, i.e., the carry flag. Hence,
we can convert timing differences caused by the microarchi-
tecture into an architecturally accessible information without
using any architectural timing primitive.

Figure 3 illustrates the basic idea of TLT. Core #Y monitors
a cache line using umonitor and sleeps using umwait. Core
#X executes an event that can either be fast (F) or slow ($).
Such a scenario is, e.g., typical for a timing-based side chan-
nel, where the event might be a memory load. The memory
load is fast if it is served by the cache, or slow if it has to
be served by the main memory. Core #X creates a padding,

e.g., using nop instructions, such that the execution of the
padding plus ¥ finishes before the timeout of umwait, but
the execution of the padding plus S finishes after the timeout
of umwait. Note that this padding has to be created only once,
e.g., in an initialization step in which an attacker can repeat-
edly trigger both F and S. After the event, Core #X executes
a store to the cache line monitored by Core #Y. Both Core #X
and Core #Y start executing at the same time. If F is executed,
the store hits the cache line while Core #Y sleeps, causing
the carry flag to be set to ‘0’. In contrast, if . is executed, the
store is executed after the OS timeout of umwait. Thus, Core
#Y wakes up due to the timeout, and the carry flag is 1°. As
a result, the carry flag provides an attacker the architectural
information whether the measured event was fast (F) or slow
(S), without an architectural timer.

5 Time-less Covert Channel

In this section, we use TWM to build a timeless cross-core
covert channel to show that not even a coarse-grained archi-
tectural timer is required for synchronized communication.

5.1 Setup

In the covert-channel setup, we transmit data from one phys-
ical CPU core to a different physical CPU core. We do not
assume any specific core assignment for the sender or re-
ceiver. Both sender and receiver can only execute unprivileged
code. In line with many previous covert channels [21], we
assume shared memory between sender and receiver, which
can be read-only (e.g., a shared library) or writable. There is
no requirement for the sender or receiver to synchronize the
communication or agree on any common information before
the transmission. The covert channel does not require any
architecturally accessible timer, e.g., to count the number of
events during a specific time window. The covert channel does
not require cache-specific information, e.g., to build eviction
sets [16]. We evaluate the channel on an Intel Core 19-12900K
with Ubuntu 20.04 LTS (kernel 5.11.0).

5.2 Design

The sender and receiver use a cache line on the shared memory
page for transmitting data without modifying the content of
the cache line. The receiver repeatedly monitors the shared
cache line using TWM. Hence, the carry flag of the receiver
is ‘0’ if the sender transiently wrote to the cache line, and ‘1’
otherwise. As there are no synchronization or time slices used
by the sender or receiver, the data transmission must be self-
synchronizing. Our covert channel relies on the Manchester
encoding often used for self-clocking data transmission on
physical layers, such as in NFC, RFID, or consumer infrared
protocols. With that encoding, every bit is encoded as a signal
change, i.e., on the physical level as raising or falling edge. In

Spec. write —A Monitored cache line }‘\ -Spec. write

Spec. write ——_| \-Spec. write
0’ bit ‘1’ bit

Figure 4: Every bit sent via the covert channel is encoded as
the change of the carry flag. The only difference in sending a
‘0’ and ‘1’ is the order in which the speculative writes to the
cache line are executed.

our scenario, the signal is the carry flag, and bits are encoded
by a change in the carry flag (from ‘0’ to ‘1’ or from ‘1’ to
‘0’). The sender either wakes up the receiver to set the carry
flag to ‘0’ or lets the receiver time out to set the carry flag to
‘1’. To send a Manchester-encoded bit, the sender toggles the
carry flag from ‘0’ to ‘1’ or from ‘1’ to ‘0’.

5.3 Implementation

For waking up the receiver, the sender speculatively writes
to the monitored cache line. To increase the chance that the
transient write wakes up the receiver, we ensure a large tran-
sient window that can transiently execute multiple writes. In
contrast to the analysis by Ragab et al. [73], microcode assists
did not lead to a longer transient window than branch mispre-
dictions on our system. Hence, we used the RSB-based spec-
ulation technique introduced by Stecklina and Prescher [86]
that was later classified as a Spectre variant as well (Spectre-
RSB [12,47,56]). While this variant was not evaluated by
Ragab et al. [73], it led to the most reliable transient win-
dow. With this mechanism, the transient write is executed
successfully in 99.96 % of the cases.

Figure 4 shows how the Manchester encoding is imple-
mented for the covert channel. To ensure that the execution
times for triggering a wakeup and not triggering a wakeup do
not differ significantly, the sender always accesses 2 cache
lines, the monitored cache line, and an unrelated cache line.
For a ‘0’-bit, the sender repeatedly transiently writes to the
monitored cache line and then also repeatedly transiently to
an unrelated cache line. Similarly, for a ‘1°-bit, the sender first
repeatedly transiently writes to an unrelated cache line and
then repeatedly to the monitored cache line.

While it is theoretically straightforward to trigger a change
in the carry flag, there are certain pitfalls to avoid in the
actual implementation. First, when the sender wakes up the
receiver, the receiver records more events in the same time
frame compared to when the receiver runs into the timeout.
Thus, the period lengths for ‘0’ and ‘1’ bits differ, which
requires special handling in the decoding step. Second, due
to missing synchronization, the sender cannot simply induce
a change in the carry flag. Instead, the sender has to keep
each state of the carry flag for a longer period to ensure that
the receiver captures it. This oversampling by the receiver

also ensures that noise, e.g., unrelated changes of the carry
flag, can be filtered in the post-processing phase. Third, one
core can only monitor a single cache line at a time. Hence,
synchronization of the bitstream, i.e., detecting at which bit
the decoding has to start, must be solved on the protocol level,
e.g., by sending a distinct preamble.

5.4 Evaluation

We evaluate the covert channel by repeatedly transmitting
100 B of data from one core to a different core. Due to the
Manchester encoding, the data can be easily reconstructed
without requiring an additional clock signal. ‘O’ bits are en-
coded as rising edge (‘0° — ‘1), ‘1’ bits are encoded as
falling edge (‘1 — ‘0’). Our covert channel achieves an aver-
age transmission rate of 697 bit/s with an error rate of 0 %.

6 Case Studies

In this section, we present 3 case studies based on the prim-
itives introduced in Section 4 (TWM and TLT), and the
interrupt-based wake-up behavior analyzed in Section

In the first case study (Section 6.1), we present Spectral, a
way of exploiting Spectre attacks without requiring access to
an architectural timer, neither a local timer [45,47,56,87], nor
aremote timer [82,83]. In the second case study (Section 6.2),
we demonstrate that we can reproduce the well-known cache
attack on the OpenSSL AES T-table implementation without
requiring an architectural timer. Finally, in the third case study
(Section 6.3), we show that we can fingerprint the website a
user opens without using any OS interface or architecturally
available high-resolution timer.

6.1 Spectral: Architectural Spectre Attacks

In this case study, we present Spectral, a method to exploit
existing Spectre variants without a timing-based side chan-
nel. While Spectral can be combined with different Spectre
variants, we demonstrate it on Spectre-PHT [45] as this is
a powerful combination and still easy to illustrate. Instead
of using a timing-based side channel, Spectral uses TWM to
convert transiently-accessed out-of-bounds data directly to
architectural bits. We show that this variant is extremely reli-
able with leakage rates up to 200 kbit/s and error rates below
0.15 %, outperforming state-of-the-art attacks by factor 5.

6.1.1 Threat Model

We assume an unprivileged attacker without access to archi-
tectural timing primitives, including fine-grained architectural
timing primitives, such as rdtsc or a counting thread [81], as
well as coarse-grained architectural timers, e.g., timers with
microsecond or lower resolution [83, 87]. Spectral relies on
a bit-wise leakage gadget, similar to those used in previous

Spectre Gadget Attacker

bit‘0” ! bit‘l bit‘0 ! bit‘l’

; UMWAIT
Retired T
| Sleep state

Misspeg';ulalion -
' Cache Line #1

MO[J [0JUOD

/

store : store wakeup
\ [
H H
H Cache Line #0 | timeout
H H
H H
i

EFLAGS.CF: 0 H 1

Figure 5: The mispredicted branch of the Spectral gadget
reads a bit out of bounds. Based on this bit, there is a tran-
sient store to one of two cache lines. TWM monitors one of
these cache lines to convert the microarchitectural state to an
architectural state, and thus the leaked bit.

work [10, 55, 82, 83]. As discussed in existing Spectre at-
tacks [45,47,56,82], finding such gadgets is orthogonal to our
work. For the evaluation, we follow best practices and inject
our own gadget into the victim [45,47, 56, 82]. For the covert
channel, we assume shared (read-only) memory between the
victim and the attacker. We do not require hyperthreading.

6.1.2 Spectral Attack

Spectral relies on TWM to leak values without an architectural
timer. As traditional Spectre attacks [45], Spectral also relies
on the cache to temporarily encode the leaked values. Using
the cache has the advantage that no rarely-used instructions
have to be found for Spectre gadgets [10, 82,98].

Figure 5 shows the overall idea of Spectral with a
sample gadget shown by Loughlin et al. [55] (if(x <
arrayl_size) array2larrayl[x] * 64] = ...;). In
case the user-provided array index x is out of bounds, there
is a transient write to a memory location depending on
the out-of-bound value. Instead of recovering the cache
state via a timing side channel [12, 44, 47, 56], Spectral
directly observes this transient memory write. Figure
illustrates the high-level overview. The attacker mistrains
the conditional branch and uses TWM to monitor the cache
line (array2 + 64) thatis transiently modified if the leaked
out-of-bound bit is ‘1°. In parallel to starting the monitoring,
the attacker executes the gadget with an out-of-bound index
addressing the target bit to leak. If the out-of-bound value is
‘1’, the transient write wakes up the monitoring thread. As
a result, the carry flag of the monitoring thread is cleared.
Otherwise, if the out-of-bound value is ‘0’, the transient
write does not affect the monitoring thread. As a result,
the umwait in the monitoring thread times out and sets
the carry flag to ‘1’. Hence, the architectural carry flag
of the monitoring thread is the inverse of the transiently

leaked bit. These steps can be repeated for every bit that
should be leaked. As the attacker calls the gadget and starts
TWM, synchronization is trivial. Note that in contrast to
SMoTherSpectre [10], Spectral does not require timing
measurements, nor does it require hyperthreading or perfect
synchronization. Another advantage of Spectral compared
to traditional Spectre variants is that the gadget’s spreading
value has fewer limitations. For Spectral, this value only has
to be > 64. While cache-based covert channels theoretically
work with > 64, they typically use values > 4096 to avoid
prefetching effects [45]. TLB covert channels even require
this value to be > 4096 [49,52,55]. Note that a speculative
write on read-only memory does not abort a TSX transaction,
hence Spectral cannot be used with Prime+Abort [16]. Using
Prime+Abort would either require shared writable memory in
the gadget, or a gadget that evicts a cache set based on the
secret out-of-bounds bit.

6.1.3 Results

We evaluate Spectral on an Intel Celeron N4500 (Jasper Lake)
and an Intel Core i19-12900K (Alder Lake) running Ubuntu
20.04 LTS. All default Spectre mitigations are enabled. The
victim containing the Spectral gadget and the attacker thread
are running on different physical cores. We rely on the mis-
training strategy from Kocher et al. [45] which provides 5
in-bound indices for every out-of-bound index. For every bit
we leak, we call the gadget 15 times to increase the chance of
inducing misspeculation.

With the default mwait OS timeout of 100000 cycles on
Linux, we achieve an average leakage rate of 58 963 bit/s
with an error rate of 0.44 %, resulting in a true capacity of
56 562 bit/s. Due to the nature of Spectre attacks, an attacker
can choose a trade-off between leakage rate and error rate by
simply repeating the attack multiple times per bit. Spectral
already has a low error rate, as the majority of errors are due to
interrupts waking up the mwait instruction although there was
no transient write. Hence, reducing the error rate is as simple
as mounting the attack multiple times and only accepting a
bit if the carry flag is the same for all runs.

This leakage rate outperforms all timing-based Spectre
attacks and is nearly twice as fast as the fastest attack (cf.
Schwarzl et al. [83] Table I). Still, in contrast to these attacks,
the measured leakage rate of Spectral is “artificially” limited
by the choice of the umwait timeout value. While not change-
able by an unprivileged attacker, we still evaluate different
timeout values to show the limits for the leakage rate.

Figure 6 shows the average true capacity and error rate for
different umwait timeouts from 20 000 to 200 000 cycles. For
timeouts below 23 000 cycles, we observe high error rates,
as the umwait instruction often wakes up before the gadget
can execute the transient write. Spectral achieves the highest
true capacity for timeouts around 23 000 cycles, with an av-
erage true capacity of 199 800 bit/s. Larger timeouts lead to

200 f4
150
100

50

| | d .
02 04 06 08 1
unwait OS timeout [cycles] 103

Speed [kbit/s]
Error rate [%]

Figure 6: The average leakage (true capacity) and error rates
for different values of the umwait timeout. The yellow rectan-
gle highlights the default timeout of 100 000 cycles on Linux.
Too short timeouts lead to aborts before the transient write is
detected. Higher timeouts lead to lower leakage rates.

decreasing leakage rates, as every ‘0’ bit has to wait for the
entire timeout. Moreover, larger timeouts lead to increasing
error rates due to the higher probability of interrupts waking
up umwait. Still, the error rate is consistently below 1 %.

6.2 Timerless Cache Attacks

In this case study, we revisit the well-known cache attack
on the OpenSSL AES T-table implementation [66]. As a
victim, we use OpenSSL 1.0.1e, which is known to be suscep-
tible to cache attacks [16,23,25,37,72,93]. While OpenSSL
deprecated and disabled the AES T-table implementation for
security reasons, it is still a valuable benchmark for compar-
ing cache attacks [16,23,72,93]. We perform a timing-less
cache attack on AES T-tables based on TLT (cf. Section 4.2)
and compare it with Flush+Reload and Prime+Probe.

6.2.1 Setup

The AES T-table implementation features four T-tables, each
spanning 16 cache lines to compute the ciphertext. The
memory-access pattern of the AES T-table depends on the
plaintext p and the secret key k.

In line with previous attacks [16,25,72], our attack is also
fully automated. We rely on template attacks as proposed by
Gruss et al. [25] to profile and exploit cache-based informa-
tion leakage automatically. However, instead of measuring
memory-access times, we rely on TLT. For TLT, our attack
approach needs to find an appropriate padding to distinguish
fast and slow events, i.e., cache hits and misses. The padding
has to ensure that executing the padding, a subsequent cache
hit, and a write all execute before the OS timeout of umwait.
In contrast, executing the padding, a subsequent cache miss,
and a write should not execute before the OS timeout. This
padding can be determined automatically.

The entire automated calibration step takes around 250s.
The execution time of the calibration highly depends on the
umwait OS timeout. For example, it takes 6 s to calibrate the
threshold when the OS timeout of umwait is 500 cycles.

Plaintext byte Plaintext byte Plaintext byte

o ..I o Ci.l‘ o :..l |]
. . ",

Figure 7: Cache hits on the first T-table with Flush+Reload
(left), TLT (middle), Prime+Probe (right) with 300 encryp-
tions. Darker means more cache hits. In all cases kg = 0x00.

6.2.2 Exploitation

While previous cache attacks require an architectural timer
to distinguish cache hits and misses, our attack does not. For
the proof-of-concept implementation, we assume that the T-
table addresses are known to the attacker. The attacker uses
TLT on one CPU core, monitoring the T-table addresses on a
different core. In line with previous work [16,23,72], we do
not perform a full key-recovery attack since we only aim to
compare our new attack with other techniques.

6.2.3 Results

We evaluated the new TLT-based attack and compared it to
the Flush+Reload-based version and the Prime+Probe-based
version on an Intel Celeron N4500 (Jasper Lake). Figure
presents a comparison of our AES T-table attack with regu-
lar Flush+Reload-based and Prime+Probe-based attacks. It
shows the visible T-table access pattern with one fixed key
byte, which is generated by these attacks within 300 encryp-
tions separately. Similar results can be found in previous
work [23,25,72]. We perform encryptions until the correct
guess for the upper 4 bits of key byte ko from all the candidate
key bytes can be identified with a 5 % margin. TLT requires
around 1.6 times as many encryptions as Flush+Reload and
12.5 times less than Prime+Probe.

On average, we derived 64 bits of the secret key in around
38 s using the TLT-based attack. With fewer than 1000 en-
cryptions, the number of encryptions has the same order of
magnitude as Flush+Reload-based attacks. Hence, improve-
ments for Flush+Reload-based attacks, such as noise reduc-
tion or performance degradation [4] also improve the TLT-
based attack. Besides, the total attack time spent can be further
reduced when a smaller OS timeout value of umwait exists.

6.3 Website Fingerprinting

In this case study, we show that the mwait instructions are
not only useful for timerless attacks. While there is no mwait
instruction on ARM, we show that the similar but much more
limited wfi instruction that suspends the CPU core until an
interrupt or a debug entry request is received [6] can also
be used for this case study. When combined with a coarse-
grained timer (around 10 ms), they can also be exploited for
interrupt-based attacks. By counting the number of wakeups

mwaltx
executions
~
=)
NT T T 7T

20 40 60
Time Bucket

Figure 8: The number of mwaitx executions per 10ms
each over 1s (100 time buckets) when opening Yahoo and
YouTube. The more traffic there is in a time bucket, the more
executions of mwaitx are observable.

during a 10 ms interval caused by network interrupts, we can
reliably detect which website a user opens.

6.3.1 Threat Model

We assume an unprivileged attacker running an unprivileged
application that can execute the umwait (Intel), monitorx
(AMD), or wfi (ARM) instruction. The system does not
expose interrupt or network statistics via any unprivileged
interface [101]. The attacker can also use a coarse-grained
timer with millisecond resolution, e.g., clock_gettime or
setitimer. We assume that the system has more CPU cores
than network cards to monitor interrupts on all network cards.

6.3.2 Spying on Network Interrupts

To spy on network interrupts, we rely on the property of the
mwait instructions that they also wake up if there is an ex-
ternal interrupt [2, 34], which is also the case for the ARM
wf1i instruction. Transmitting and receiving network packets
causes such interrupts that lead to wakeups. Hence, execut-
ing umwait (Intel), mwaitx (AMD), or wfi (ARM) on the
core that receives the network interrupts leads to constant
(spurious) wakeups when there is network traffic.

We rely on a coarse-grained timer to provide fixed time
intervals, so-called time buckets. We count how many exe-
cutions of an mwait/wfi instruction fall into a time bucket.
The more often the instruction is interrupted, the faster the
average execution time of the instruction. Hence, this results
in a higher number of executions that fall into the same time
bucket. For our evaluation, we chose 10 ms as a bucket size.
Figure 8 shows a trace for opening two websites where the
distribution of interrupts over the loading differs significantly.

6.3.3 Website Classification

For the classification of the websites, we rely on existing
machine learning tools and techniques [69]. Our recorded
traces are time series, as they contain features over the time
it takes to load the website. In our case, the features are the
number of executions of the mwait/wfi instruction. As we

always record the interrupts for a fixed period, all traces have
an equal length. However, the length of the information within
a trace depends on two main factors: the size (and thus also
the number of network requests) of the target website, as
well as the transfer speed of the website. To account for both
effects, we rely on Dynamic Time Warping (DTW) [7]. DTW
measures the similarity of two time sequences where the
speed changes dynamically within the time series. Hence,
changes in the internet speed or latency do not impact the
classification.

For the implementation, we rely on the open-source Python
implementation by Loning et al. [54]. This implementation
provides a ready-to-use k-nearest-neighbors time-series clas-
sifier with DTW. We split the collected traces into training
and test data with a random 75 to 25 split. The & for the k-
nearest-neighbors classification is simply set to the default of
‘1’. We cross-validate our classifier by running the evaluation
multiple times with random splits of training and test data.

6.3.4 Results

We evaluated the website classification on three different ma-
chines, an Intel, an AMD, and an ARMv8 machine. On the
Intel machine (Intel Celeron N4500 Jasper Lake, RTL8125-
based Ethernet controller), we evaluate the classification with
the unprivileged umwait instruction. On the AMD machine
(AMD Ryzen 5 2500U, RTL8111/8168/8411-based Ethernet
controller), we evaluate the classification with the unprivi-
leged mwaitx instruction. On the ARMv8 machine (ARM
Cortex A73, Amlogic Meson 6 DWMAC Ethernet controller),
we evaluate the classification with the unprivileged wfi in-
struction. All machines run Ubuntu 20.04 LTS.

For the websites, we use the 100 most-visited websites as
provided by the Alexa Top list.” We choose the Alexa Top
100 to be in line with related work [50, 75, 84], thus enabling
a better comparison. We repeat the measurement 100 times
for every website to ensure that our training and test sets are
large enough for our classifier. For the sake of clarity, Figure
shows the confusion matrix for the top 15 sites based on the
measurements on the 3 machines. Every cell represents the
percentage that the classifier classifies a trace of the website
specified by this row into the class specified by the column.
For every site, the probability that the trace is classified cor-
rectly is the highest. This is also true for the top 100 sites.
On AMD, the top 15 sites have an average classification ac-
curacy of 92.6 %, and the top 100 sites still have an average
classification accuracy of 78 %. Hence, the classifier performs
significantly better than random guessing (6.7 % and 1 % re-
spectively). For all tested websites, we achieve a precision
of 92.7 % and a recall of 93.1 % for the top 15 sites, and a
precision of 78 % and a recall of 78 % for the top 100 pages.
The Intel machine performs slightly worse with a precision
of 74.7 % and a recall of 73.9 % (top 15), and a precision of

3https://www.alexa.com/topsites

True label
True label

Predicted label

(a) AMD

Predicted label

(b) ARM

True label

Predicted label

(c) Intel

Figure 9: The confusion matrix for the website classification on AMD, ARM, and Intel. For every site, the probability that the

trace is classified correctly is the highest.

71 % and a recall of 70 % for the top 100 pages. Still, for every
website, the probability that the trace is classified correctly is
the highest. The reason for the worse performance is that the
AMD machine has 4 physical cores with SMT, resulting in
8 logical CPUs, whereas the Intel machine only has 2 physi-
cal cores without SMT, resulting in 2 logical CPUs. Hence,
the Intel machine suffers from more system noise, as all in-
terrupts are distributed across fewer cores, leading to more
different interrupt sources per core. On the AMD machine,
Linux can distribute the interrupts more evenly across all the
cores, resulting in much fewer other interrupts on the core
that handles network interrupts. Still, both for the AMD and
the Intel machine, the classifier vastly outperforms random
guessing. On ARM, we achieve a precision of 67 % and a
recall of 66 % for the top 100 pages. While slightly worse
than on the x86 platforms, the results are still significantly
better than random guessing.

Our attack performs similarly to previous work while hav-
ing fewer requirements. Spreitzer et al. [85] report 89 % accu-
racy on 100 sites, whereas Jana and Shmatikov [40] report that
between 30 % and 50 % of pages are distinguishable in the
top 100 000 pages. Both approaches rely on the Linux /proc
interface, which is restricted on newer Android versions, and
unavailable on Windows. Lee et al. [48] exploit GPU vul-
nerabilities and report accuracies of 69.4 % and 60.9 % for
the top 100 sites, depending on the exploited vulnerability.
Gulmezoglu et al. [27] achieve an accuracy of 86.3 % for
the top 30 sites plus 10 selected sites by relying on the—now
restricted—access to hardware performance counters.

7 Countermeasures

In this section, we present countermeasures to prevent attacks
exploiting the mwait instructions. We distinguish between
countermeasures on the hardware, OS, and application layer.

7.1 Hardware

As a long-term solution, countermeasures should be imple-
mented at the hardware level. We propose three solutions
from which two are backward-compatible hardware changes
to prevent our primitives.

Remove Wake-up Reason. The privileged mwait and the
unprivileged AMD variant mwaitx do not provide architec-
tural feedback. Hence, a possible hardware solution is to
change the umwait instruction to not update the carry flag.
We expect that a microcode update could change that behav-
ior, as changing instruction behavior using microcode was
done in the past as well [74, 80].

Remove Functionality. A simple solution is to introduce
an MSR bit or use a bit in the CR4 control register to convert
the instruction to a nop. As applications have to handle cases
in which umwait behaves architecturally equivalent to the
nop instruction, this is fully backward compatible and similar
to the handling of mwaitx inside VMs (cf. Section 3.5).

Instruction Deprecation. Another more drastic variant
is to deprecate and disable the family of mwait completely.
Even though this breaks backward compatibility, Intel already
deprecated other instruction set extensions, such as TSX [60].
Doing so would trivially also prevent all discussed attacks.
With idle=nomwait, Linux also supports a command-line
kernel parameter to not use the mwait instruction at all.

7.2 Operating System and Hypervisor

Mitigations on the OS and hypervisor level are the most real-
istic short- and mid-term solutions as they can be deployed
via software updates.

Disable in the OS. Setting the CR4.TSD bit disables the
unprivileged execution of rdtsc and rdtscp [34]. Although
not mentioned in the description of this bit, this bit is also re-
purposed to prevent the unprivileged execution of umwait ac-
cording to the instruction description in the Intel manual [35].
We verified this behavior by setting this bit at runtime, which
indeed leads to a general-protection fault when executing
umwait. However, setting this bit has the side effect that no

[0 umwait
[0 Busy

L ol 00 . .

T T T T T T T
4,990 4,992 4,994 4996 4,998 5,000 5,002 5,004

Percent of time

Time [ms]

Figure 10: The CPU frequency distribution when executing
unwait and a busy loop.

unprivileged application can use the time-stamp counter. On
the hypervisor level, disabling umwait is possible without the
side effect of disabling rdtsc and rdtscp. Intel provides a
VM-execution-control bit to trap the umwait instruction [34].
As shown in Section 3.5, KVM in the current Linux kernel
(5.11.0) does not trap umwait.

There is no documented method to disable the AMD-
specific variants monitorx and mwaitx. The AMD manual
explicitly states that the MSR (0xc0010015) does not affect
these instructions [2]. Similar to umwait, a hypervisor can
also trap the mwaitx instruction. KVM in the current Linux
kernel (5.11.0) traps mwaitx and emulates it as a nop.

Virtualization-based security (VBS) [61, 97], as imple-
mented in Windows 10 and 11, can mitigate our attack. With
VBS, the OS is virtualized to implement security features in
the hypervisor, letting the hypervisor trap the instructions.

Detection. Several approaches for detecting microarchitec-
tural attacks use performance counters [13,30,38, 63,68, 102,
104]. They generally exploit the fact that cache attacks typi-
cally result in a large number of cache misses while executing
a small number of instructions. Hence, these techniques can
be used indirectly, e.g., to detect our timing-less attack when
used to measure cache hits and misses (cf. Section 6.2).

We did not find any performance counters on Intel or AMD
related to the mwait instructions. Moreover, counters related
to the C- and P-state did not capture the changes caused by the
unprivileged mwait instructions. As the mwait instructions
only switch to a special (sub) state within the CO state [35],
there is no difference in the counters. We also recorded the
CPU frequency to detect possible frequency reductions when
executing umwait. Figure 10 shows the CPU frequency dis-
tribution when running a busy loop and umwait. The busy
loop ensures that the CPU is always at the maximum CPU
frequency. However, umwait also stays in the highest C state,
only in a substate. The entered sleep state is not deep enough
to change the CPU frequency measurably. Future work has
to investigate if our primitives can be detected indirectly, e.g.,
via stalling behavior and throughput.

OS Quota. Removing the umwait OS timeout mitigates
our attack primitives (cf. Section 4). However, allowing an
unprivileged user to halt or block a processor without a limit
enables these users to mount trivial denial-of-service attacks
against the system. Alternatively to disabling the timeout

entirely, we propose to increase the timeout or randomize
it. By increasing the timeout, the maximum bandwidth of
covert channels and thus also the Spectral attack decreases.
Moreover, distinguishing the timing of two events with TLT
is less reliable with larger timeouts. An OS can randomize
the timeout on context switch, introducing noise, and thus
reducing the performance and reliability of the primitive.

7.3 Software

Our presented attacks are side-channel attacks, and hence an
application can also be hardened against them.

Constant Time. Cryptographic algorithms can generally
be implemented in a way that they are not susceptible to
traditional side-channel attacks by ensuring that algorithms
are data oblivious [36]. Such algorithms are in state-of-the-art
cryptographic libraries such as OpenSSL or mbedTLS. While
such implementations cannot be attacked using our primitives,
they are still susceptible to Spectre attacks.

Spectre Mitigations. To prevent Spectre, including Spec-
tral, the state-of-the-art mitigation technique is to add memory
fences between conditional jumps and subsequent memory
accesses [3,5,33]. Software developers have to ensure that no
exploitable gadgets are in their software to prevent Spectre.

Noise. For single-shot attacks, such as the website clas-
sification (cf. Section 6.3), noise can be a viable hardening
mechanism. By randomizing the order of requests or adding
additional dummy requests, a browser could add randomness
to the interrupt trace. While this does not entirely prevent
an attack, it makes it more challenging, as many more traces
are required to learn the interrupt behavior of a website. For
attacks on repeatable events, such as the T-table attack (cf.
Section 6.2), noise is not an effective mitigation. As any added
random noise is statistically independent of the signal, it can
be filtered out by averaging over many traces.

8 Discussion

Applicability As shown in our case studies, our primitives are
a generic attack technique even if the ability only monitors
write but not read accesses. They can be applied in scenarios
where other cache attacks are also applicable. However, there
are also scenarios where our primitives are advantageous over
other attacks, as also shown in Section 4. 1. Especially if noise
resistance is required, our primitives are better suited than
most other cache attacks. Moreover, our primitives perform
especially well for monitoring high-frequency as it has a min-
imal blind spot. The most-similar attack is Prime+Abort [16].
However, the applicable CPUs for Prime+Abort and our prim-
itives are mutually exclusive, as TSX is unavailable on CPU
generations that support umwait. Furthermore, TSX is dis-
abled on all currently available CPUs using microcode up-
dates [60]. While there are differences to Prime+Abort, our
side channel can act as a (drop-in) replacement on modern

CPUs. The differences are that there is no internal timeout
for transactions [24]. Hence, Prime+Abort is not a generic
timing replacement (cf. Section 4.2). Prime+Abort is also less
stealthy, as TSX-related performance counters can be used as
a detection, whereas we did not find counters for umwait.

Hypervisors and operating systems might block or emulate
rdtsc [26,42,57,95]. Our paper shows that in such scenarios,
it is also necessary to block or emulate the umwait instruction.
Otherwise, an attacker can simply resort to umwait-based
attacks. Similarly, static-detection methods [67] also require
updates to not only detect rdt sc-based attacks.

Meltdown-type Attacks. We used our umwait-based prim-
itive as the covert channel for a Spectre attack. Although we
only show the primitive for Spectre attacks, we argue that the
same is also true for the Meltdown-type class [12] of transient-
execution attacks. For these attacks, it is even easier, as the
attacker fully controls the leaking gadget and does not have
to be found as in a Spectre attack. Moreover, multiple CPU
cores can be used to leak multiple bits at once, improving
the leakage rate compared to our Spectral attack. However,
we, unfortunately, cannot evaluate such an attack because
none of our machines that support the umwait instruction is
vulnerable to any Meltdown-type attack.

Other OS. The concept is OS agnostic as we exploit the
behavior of a CPU instruction. While the Linux kernel devel-
opers see a missing umwait timeout as a security problem,
speculating that it can be used for covert channels or Spec-
tre [14], Windows 10 does not specify a timeout. Coinciden-
tally, it prevents attacks relying on the carry flag. We could
not verify the default value on macOS, as there is no support
for Tremont- or Alder-Lake-based CPUs.

9 Conclusion

In this paper, we presented novel techniques to convert mi-
croarchitectural states into architectural states without relying
on time measurements but instead on undocumented behav-
iors of the unprivileged umonitor and umwait instructions. In
three case studies, we showed the versatility of our primitive.
We showed that we can mount efficient transient-execution
attacks and traditional side-channel attacks without an archi-
tectural timer. In combination with a coarse-grained timer, we
mounted interrupt-timing attacks on network requests. Our
case studies highlight that the boundary between architecture
and microarchitecture becomes blurry, leading to new attack
variants and complicating effective countermeasures.

Availability

The source code for this paper is available on GitHub:
https://github.com/CISPA/mwait.

Acknowledgments

We want to thank the anonymous reviewers for their guidance,
comments and valuable suggestions. We also want to thank
Niklas Flentje for fruitful discussions and providing feed-
back to drafts of this work. This work was supported in part
by Semiconductor Research Corporation (SRC) Hardware
Security Program (HWS).

References

[1] O. Aciigmez, S. Gueron, and J.-p. Seifert, “New Branch
Prediction Vulnerabilities in OpenSSL and Necessary
Software Countermeasures,” in Proceedings of the 11th
IMA International Conference on Cryptography and
Coding, 2007.

[2] “AMD64 Architecture Programmer’s Manual,” Ad-
vanced Micro Devices Inc., 2017.

[3] “AMD64 Technology: Speculative Store Bypass Dis-
able,” Advanced Micro Devices Inc., 2018, revision
5.21.18.

[4] T. Allan, B. B. Brumley, K. Falkner, J. Van de Pol,
and Y. Yarom, “Amplifying Side Channels Through
Performance Degradation,” in ACSAC, 2016.

[5] “Cache speculation side-channels,” ARM,
2018. [Online]. Available: https://armkeil.
blob.core.windows.net/developer/Files/pdf/Cache_
Speculation_Side-channels_03May18.pdf

[6] “Dynamic power management,” ARM, 2021.
[Online]. Available: https://developer.arm.com/
documentation/100095/0003/Functional-Description/
Power-management/Dynamic-power-management

[7] D. J. Berndt and J. Clifford, “Using Dynamic Time
Warping to Find Patterns in Time Series,” in Proceed-
ings of the 3rd International Conference on Knowledge
Discovery and Data Mining, 1994.

[8] D. J. Bernstein, “Cache-Timing Attacks on AES,”
2005. [Online]. Available: http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf

[9] S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay,
“Hardware prefetchers leak: A revisit of SVF for cache-
timing attacks,” in MICRO, 2012.

[10] A. Bhattacharyya, A. Sandulescu, M. Neugschwandt-
ner, A. Sorniotti, B. Falsafi, M. Payer, and A. Kur-
mus, “SMoTherSpectre: exploiting speculative execu-
tion through port contention,” in CCS, 2019.

https://github.com/CISPA/mwait
https://armkeil.blob.core.windows.net/developer/Files/pdf/Cache_Speculation_Side-channels_03May18.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/Cache_Speculation_Side-channels_03May18.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/Cache_Speculation_Side-channels_03May18.pdf
https://developer.arm.com/documentation/100095/0003/Functional-Description/Power-management/Dynamic-power-management
https://developer.arm.com/documentation/100095/0003/Functional-Description/Power-management/Dynamic-power-management
https://developer.arm.com/documentation/100095/0003/Functional-Description/Power-management/Dynamic-power-management
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. Van Bulck, and Y. Yarom, “Fallout: Leak-
ing Data on Meltdown-resistant CPUs,” in CCS, 2019.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp,
B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin,
and D. Gruss, “A Systematic Evaluation of Transient
Execution Attacks and Defenses,” in USENIX Secu-
rity Symposium, 2019, extended classification tree and
PoCs at https://transient.fail/.

M. Chiappetta, E. Savas, and C. Yilmaz, ‘“Real time
detection of cache-based side-channel attacks using

hardware performance counters,” ePrint 2015/1034,
2015.

J. Corbet, “Short waits with umwait,” 2019. [Online].
Available: https://lwn.net/Articles/790920/

W. Diao, X. Liu, Z. Li, and K. Zhang, “No Pardon for
the Interruption: New Inference Attacks on Android
Through Interrupt Timing Analysis,” in S&P, 2016.

C. Disselkoen, D. Kohlbrenner, L. Porter, and
D. Tullsen, “Prime+Abort: A Timer-Free High-
Precision L3 Cache Attack using Intel TSX,” in
USENIX Security Symposium, 2017.

C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss,
“Rapid Prototyping for Microarchitectural Attacks,” in
USENIX Security, 2022.

D. Evtyushkin and D. Ponomarev, “Covert channels
through random number generator: Mechanisms, ca-
pacity estimation and mitigations,” in CCS, 2016.

A. Fuchs and R. B. Lee, “Disruptive Prefetching: Im-
pact on Side-Channel Attacks and Cache Designs,” in
Proceedings of the 8th ACM International Systems and
Storage Conference (SYSTOR’15), 2015.

C. P. Garcia and B. B. Brumley, “Constant-Time
Callees with Variable-Time Callers,” in USENIX Secu-
rity Symposium, 2017.

Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey
of Microarchitectural Timing Attacks and Countermea-
sures on Contemporary Hardware,” Journal of Crypto-
graphic Engineering, 2016.

B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks,” in USENIX Security
Symposium, 2018.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A Fast and Stealthy Cache Attack,” in
DIMVA, 2016.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

(36]

D. Gruss, F. Schuster, O. Ohrimenko, I. Haller, J. Let-
tner, and M. Costa, “Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional
Memory,” in USENIX Security Symposium, 2017.

D. Gruss, R. Spreitzer, and S. Mangard, “Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-
Level Caches,” in USENIX Security Symposium, 2015.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache
Games — Bringing Access-Based Cache Attacks on
AES to Practice,” in S&P, 2011.

B. Gulmezoglu, A. Zankl, T. Eisenbarth, and B. Sunar,
“PerfWeb: How to violate web privacy with hardware
performance events,” in European Symposium on Re-
search in Computer Security, 2017.

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar,
“A Faster and More Realistic Flush+Reload Attack on
AES,” in COSADE, 2015.

Y. Guo, A. Zigerelli, Y. Zhang, and J. Yang, “Adver-
sarial prefetch: New cross-core cache side channel
attacks,” arXiv:2110.12340, 2021.

N. Herath and A. Fogh, “These are Not Your Grand
Daddys CPU Performance Counters — CPU Hardware
Performance Counters for Security,” in Black Hat Brief-
ings, 2015.

L. Hetterich and M. Schwarz, “Branch Different - Spec-
tre Attacks on Apple Silicon,” in DIMVA, 2022.

J. Horn, “speculative execution, variant 4: speculative
store bypass,” 2018.

Intel, “Intel analysis of speculative execution side chan-
nels,” 2018. [Online]. Available: https://newsroom.
intel.com/wp-content/uploads/sites/11/2018/01/

Intel- Analysis-of-Speculative- Execution- Side-Channels.
pdf

Intel, “Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3 (3A, 3B & 3C): System
Programming Guide,” 2019.

——, “Intel 64 and IA-32 Architectures Software
Developer’s Manual Volume 2 (2A, 2B, 2C & 2D):
Instruction Set Reference, A-Z,” 2021.

Intel Corporation, “Guidelines for Mitigating Timing
Side Channels Against Cryptographic Implemen-
tations,” 2020. [Online]. Available: https://www.
intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/secure-coding/
mitigate-timing-side-channel-crypto-implementation.
html

https://lwn.net/Articles/790920/
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

G. Trazoqui, T. Eisenbarth, and B. Sunar, “S$A: A
Shared Cache Attack that Works Across Cores and
Defies VM Sandboxing — and its Application to AES,”
in S&P, 2015.

——, “Mascat: Preventing microarchitectural attacks
before distribution,” in CODASPY, 2018.

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Wait a minute! A fast, Cross-VM attack on AES,” in
RAID’14,2014.

S. Jana and V. Shmatikov, “Memento: Learning Secrets
from Process Footprints,” in S&P’12, 2012.

B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and
C. Giuffrida, “Kasper: Scanning for Generalized Tran-
sient Execution Gadgets in the Linux Kernel,” in NDSS,
2022.

M. S. Karvandi, M. Gholamrezaei, S. Khalaj Mon-
fared, S. Medi, B. Abbassi, A. Amini, R. Mortazavi,
S. Gorgin, D. Rahmati, and M. Schwarz, “Hyperdbg:
Reinventing hardware-assisted debugging,” in CCS,
2022.

M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and
A. Jaleel, “A high-resolution side-channel attack on
last-level cache,” in DAC, 2016.

P. Kocher, “Spectre Mitigations in Microsoft’s C/C++
Compiler,” 2018.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre At-
tacks: Exploiting Speculative Execution,” in S&P,
2019.

A. Kogler, D. Weber, M. Haubenwallner, M. Lipp,
D. Gruss, and M. Schwarz, “Finding and Exploiting
CPU Features using MSR Templating,” in S&P, 2022.

E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre Returns! Speculation Attacks using
the Return Stack Buffer,” in WOOT, 2018.

S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages
rendered on your browser by exploiting gpu vulnera-
bilities,” in S&P, 2014.

M. Lipp, D. Gruss, and M. Schwarz, “AMD Prefetch
Attacks through Power and Time,” in USENIX Security,
2022.

M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C.-m.-t.-n.
Maurice, and S. Mangard, “Practical Keystroke Timing
Attacks in Sandboxed JavaScript,” in ESORICS, 2017.

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and
S. Mangard, “ARMageddon: Cache Attacks on Mo-
bile Devices,” in USENIX Security Symposium, 2016.

M. Lipp, V. HadZi¢, M. Schwarz, A. Perais, C. Mau-
rice, and D. Gruss, “Take a Way: Exploring the Secu-
rity Implications of AMD’s Cache Way Predictors,” in
AsiaCCS, 2020.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading Ker-
nel Memory from User Space,” in USENIX Security
Symposium, 2018.

M. Loning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines,
and F. J. Kirdly, “sktime: A unified interface for ma-
chine learning with time series,” arXiv:1909.07872,
2019.

K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse,
S. Narayanasamy, and B. Kasikci, “DOLMA: Secur-
ing Speculation with the Principle of Transient Non-
Observability,” in USENIX Security Symposium, 2021.

G. Maisuradze and C. Rossow, “ret2spec: Speculative
Execution Using Return Stack Buffers,” in CCS, 2018.

R. Martin, J. Demme, and S. Sethumadhavan, “Time-
warp: rethinking timekeeping and performance mon-
itoring mechanisms to mitigate side-channel attacks,”
ACM SIGARCH Computer Architecture News, 2012.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss,
C. Alberto Boano, S. Mangard, and K. Romer, “Hello
from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud,” in NDSS, 2017.

R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and
T. Verwaest, “Spectre is here to stay: An anal-
ysis of side-channels and speculative execution,”’
arXiv:1902.05178, 2019.

Michael Larabel, “Intel To Disable TSX
By Default On More CPUs With New
Microcode,” June 2021. [Online]. Avail-
able: https://www.phoronix.com/scan.php?page=
news_item&px=Intel-TSX-Off-New-Microcode

Microsoft, “Virtualization-based secu-
rity (vbs),” 2021. [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/
design/device-experiences/oem-vbs

D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz,
“Medusa: Microarchitectural Data Leakage via Auto-
mated Attack Synthesis,” in USENIX Security Sympo-
sium, 2020.

https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram,
V. Lapotre, G. Gogniat, and P. Benoit, “WHISPER: A
Tool for Run-time Detection of Side-Channel Attacks,”
IEEE Access, 2020.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi,
E. Johnson, Z. Gang, A. Vahldiek-Oberwagner,
R. Sahita, H. Shacham, D. Tullsen, and D. Stefan,
“Swivel: Hardening webassembly against spectre,” in
USENIX Security Symposium, 2021.

O’Keeffe, Dan and Muthukumaran, Divya and Aublin,
Pierre-Louis and Kelbert, Florian and Priebe, Christian
and Lind, Josh and Zhu, Huanzhou and Pietzuch, Peter,
“Spectre attack against SGX enclave,” 2018.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks
and Countermeasures: the Case of AES,” in CT-RSA,
2006.

Y. Oyama, “How does malware use rdtsc? a study on
operations executed by malware with cpu cycle mea-
surement,” in DIMVA, 2019.

M. Payer, “HexPADS: a platform to detect “stealth”
attacks,” in ESSoS, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, 2011.

C. Percival, “Cache Missing for Fun and Profit,” in
BSDCan, 2005.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard, “DRAMA: Exploiting DRAM Addressing
for Cross-CPU Attacks,” in USENIX Security Sympo-
sium, 2016.

A. Purnal, F Turan, and 1. Verbauwhede,
“Prime+Scope: Overcoming the Observer Effect
for High-Precision Cache Contention Attacks,” in
CCS, 2021.

H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage
against the machine clear: A systematic analysis of
machine clears and their implications for transient exe-
cution attacks,” in USENIX Security, 2021.

H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida, “CrossTalk: Speculative Data Leaks Across
Cores Are Real,” in S&P, 2021.

V. Rimmer, D. Preuveneers, M. Juarez,
T. Van Goethem, and W. Joosen, “Automated
Website Fingerprinting through Deep Learning,” in
NDSS, 2018.

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

M. Schwarz, “Software-based Side-Channel Attacks
and Defenses in Restricted Environments,” Ph.D. dis-
sertation, Graz University of Technology, 2019.

M. Schwarz, D. Gruss, S. Weiser, C. Maurice, and
S. Mangard, “Malware Guard Extension: Using SGX
to Conceal Cache Attacks,” in DIMVA, 2017.

M. Schwarz, M. Lipp, and C. Canella,
“miscO110/PTEditor: A small library to modify
all page-table levels of all processes from user space
for x86_64 and ARMvS8,” 2018. [Online]. Available:
https://github.com/miscO110/PTEditor

M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice,
R. Spreitzer, and S. Mangard, “KeyDrown: Eliminat-
ing Software-Based Keystroke Timing Side-Channel
Attacks,” in NDSS, 2018.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss, “ZombieLoad:
Cross-Privilege-Boundary Data Sampling,” in CCS,
2019.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard,
“Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript,”
in FC, 2017.

M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “Net-
Spectre: Read Arbitrary Memory over Network,” in
ESORICS, 2019.

M. Schwarzl, P. Borrello, A. Kogler, K. Varda, T. Schus-
ter, D. Gruss, and M. Schwarz, “Robust and scalable
process isolation against spectre in the cloud,” in ES-
ORICS, 2022.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mit-
tal, Y. Oren, and Y. Yarom, “Robust Website Finger-
printing Through The Cache Occupancy Channel,” in
USENIX Security Symposium, 2019.

R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard,
“Exploiting data-usage statistics for website fingerprint-
ing attacks on android,” in WiSec, 2016.

J. Stecklina and T. Prescher, “LazyFP: Leaking FPU
Register State using Microarchitectural Side-Channels,”
arXiv:1806.07480, 2018.

Stephen Rottger and Artur Janc, “A Spectre proof-
of-concept for a Spectre-proof web,” 2021. [Online].
Available: https://security.googleblog.com/2021/03/
a-spectre-proof-of-concept-for-spectre.html

https://github.com/misc0110/PTEditor
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

C. Trippel, D. Lustig, and M. Martonosi, “Meltdown-
Prime and SpectrePrime: Automatically-Synthesized
Attacks Exploiting Invalidation-Based Coherence Pro-
tocols,” arXiv:1802.03802, 2018.

P. Turner, “Retpoline: a software construct for prevent-
ing branch-target-injection,” 2018. [Online]. Available:
https://support.google.com/faqs/answer/7625886

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution,” in USENIX Security Symposium,
2018.

J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yuval, B. Sunar, D. Gruss,
and F. Piessens, “LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection,” in
S&P, 2020.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx, “Telling Your Secrets Without Page
Faults: Stealthy Page Table-Based Attacks on Enclaved
Execution,” in USENIX Security Symposium, 2017.

S. Van Schaik, C. Giuffrida, H. Bos, and K. Razavi,
“Malicious Management Unit: Why Stopping Cache
Attacks in Software is Harder Than You Think,” in
USENIX Security Symposium, 2018.

S. van Schaik, A. Milburn, S. Osterlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue In-flight Data Load,” in S&P, 2019.

B. C. Vattikonda, S. Das, and H. Shacham, “Eliminat-
ing fine grained timers in Xen,” in CCSW, 2011.

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

D. Wang, A. Neupane, Z. Qian, N. Abu-Ghazaleh, S. V.
Krishnamurthy, E. J. Colbert, and P. Yu, “Unveiling
your keystrokes: A Cache-based Side-channel Attack
on Graphics Libraries,” in NDSS, 2019.

X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “Sec-
Pod: a framework for virtualization-based security sys-
tems,” in USENIX ATC, 2015.

D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and
C. Rossow, “Osiris: Automated Discovery of Microar-
chitectural Side Channels,” in USENIX Security, 2021.

Y. Yarom and N. Benger, “Recovering OpenSSL
ECDSA Nonces Using the FLUSH+ RELOAD Cache
Side-channel Attack,” Cryptology ePrint Archive, Re-
port 2014/140, 2014.

Y. Yarom and K. Falkner, “Flush+Reload: a High Res-
olution, Low Noise, L3 Cache Side-Channel Attack,”
in USENIX Security Symposium, 2014.

K. Zhang and X. Wang, “Peeping Tom in the Neigh-
borhood: Keystroke Eavesdropping on Multi-User Sys-
tems,” in USENIX Security Symposium, 2009.

T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-
time side-channel attack detection system in clouds,”
in RAID, 2016.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-VM Side Channels and Their Use to Extract
Private Keys,” in CCS, 2012.

Y. Zhang and M. Reiter, “Diippel: retrofitting commod-
ity operating systems to mitigate cache side channels
in the cloud,” in CCS, 2013.

https://support.google.com/faqs/answer/7625886

	Introduction
	Background
	Caches and Cache Attacks
	Transient Execution Attacks
	Idle-Loop Optimization

	Memory Monitoring
	Wake-up Trigger
	Memory Types
	Timeouts
	Wake-up Latency
	Virtualization

	Attack Primitives
	TWM: Architectural Monitoring of Transient Writes
	TLT: Timer-less Timing Measurement

	Time-less Covert Channel
	Setup
	Design
	Implementation
	Evaluation

	Case Studies
	Spectral: Architectural Spectre Attacks
	Threat Model
	Spectral Attack
	Results

	Timerless Cache Attacks
	Setup
	Exploitation
	Results

	Website Fingerprinting
	Threat Model
	Spying on Network Interrupts
	Website Classification
	Results

	Countermeasures
	Hardware
	Operating System and Hypervisor
	Software

	Discussion
	Conclusion

